
- •Р аспад нуклеиновых кислот, нуклеазы пищеварительного тракта и тканей.
- •Р аспад пуриновых нуклеотидов.
- •Общие принципы синтеза мононуклеотидов
- •П роисхождение атомов «с» и «n» в пуриновом кольце
- •Инозиновая кислота как предшественник пуриновых мононуклеотидов
- •Распад пиримидиновых нуклеотидов
- •Б иосинтез пиримидиновых нуклеотидов .Регуляция биосинтеза пуриновых и пиримидиновых мононуклеотидов.
- •Биосинтез дезоксирибонуклеотидов
- •Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей
- •Нарушения обмена нуклеотидов
- •Строение нуклеиновых кислот
- •Биосинтез (репликация) днк
- •Этапы репликации
- •Синтез днк и фазы клеточного деления.
- •Повреждение и репарация днк
- •Б иосинтез рнк
- •Понятие о мозаичной структуре генов
- •Биосинтез белка
- •Биологический код
- •Транспортная рнк как адаптор аминокислот
- •Субстратная специфичность арс-аз изоакцепторные т-рнк.
- •Строение рибосомы
- •Посттрансляционный процессинг белков
- •Адаптивная регуляция экспрессии генов у прокариотов и эукариотов
- •Теория оперона строение и функционирование лактозного оперона
- •Роль энхансеров, селенсеров,
- •Распад клеточных белков
- •Время полужизни разных белков
- •Клеточная дифференцировка
- •Изменение белкового состава клеток при дифференцировке (На примере белкового состава полипептидных цепей гемоглобина)
- •Молекулярные механизмы генетической изменчивости
- •Р екомбинация как источник генетической изменчивости
- •Генетическая гетерогенность
- •Н аследственные болезни
Биосинтез белка
К
оллинеарность
- свойство, обусловливающее соответствие
между последовательностью кодонов
нуклеиновых кислот и аминокислот
полипептидных цепей. В белке воспроизводится
та же последовательность аминокислот,
в какой соответствующие кодоны
располагаются в гене. Это означает, что
положение каждой аминокислоты в
полипептидной цепи зависит от особого
участка гена. Генетический код считается
коллинеарным, если кодоны нуклеиновых
кислот и соответствующие им аминокислоты
в белке расположены в одинаковом линейном
порядке.
Инициация начинается с присоединения к мРНК в области «кэпа» малой субъединицы рибосомы 40S, факторов инициации (IF), инициирующей Мет-тРНКМет и ГТФ. Когда в результате движения этого комплекса по мРНК антикодон Мет-тРНКМет свяжется с инициирующим кодоном АUG, комплекс останавливается. Происходит присоединение 60S-субъединицы рибосомы, сопровождающееся гидролизом ГТФ и отделением факторов инициации. Формируется 80S-рибосома с двумя активными центрами: Р (пептидильным) центром, в котором находится Мет-тРНКМет, и А(аминоацильным) центром, в область которого поступает первый смысловой кодон мРНК.
Этап элонгации включает три последовательные стадии:
- Связывание аа-тРНКаа в А-центре.
- Образование пептидной Пептидил-тРНК связи.
- Транслокация - перемещение рибосомы по мРНК.
Терминация трансляции происходит после включения в А-центр одного из стоп кодонов: UAG, UGA, UAA
Транскрипцией называется синтез РНК на ДНК-матрице. В результате образуются первичные траскрипты мРНК, тРНК, рРНК, комплементарные матричной цепи ДНК, имеющей направление от 3'-, к 5'-концу. Субстратами и источниками энергии для синтеза РНК являются рибонуклеозидтрифосфаты ( НТФ: АТФ, ГТФ, ЦТФ, УТФ).
Катализируют синтез РНК ферменты РНК-полимеразы. В ядре клеток эукариотов обнаружены три фермента:
• РНК-полимераза I, синтезирующая пре-рРНК;
• РНК-полимераза II, ответственная за синтез пре-мРНК;
• РНК-полимераза III, синтезирующая пре-тРНК.
Синтез начинается с того момента, когда РНК-полимераза II присоединяется к матрице в специальном участке - протомотре. Промотор содержит ТАТА-последоательность, которую узнают белком ТАТА-фактором. Матрицей для синтеза служит одна из цепей ДНК.
Элонгация - наращивание молекулы РНК происходит путем присоединения очередного рибонуклеотида, комплементарного тому дезоксирибонуклеотиду ДНК, который находится в активном центре РНК-полимеразы
Терминация. участок ДНК содержит определенный участок - сайт терминации, где заканчивается ген, представляющий из себя последовательность нуклеотидов.И фермент отделяется ДНК-цепь. Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидов, происходит «кэпирование» 5'-конца.
Первичный транскрипт или пре-мРНК комплементарен гену, содержит как экзоны - последовательности, кодирующие определенные участки молекулы белка, так и интроны - некодирующие последовательности. В процессе образования молекул «зрелой» мРНК интроны вырезаются из первичного транскрипта, концы экзонов соединяются друг с другом - эту реакцию называют сплайсингом РНК
Процесс вырезания интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП), которые образуют комплексы - сплайсосомы. После завершения сплайсинга «зрелая» мРНК становится примерно в четыре раза короче первичного транскрипта. Сплайсинг происходит в ядре, в цитоплазму переносится уже «зрелая» мРНК