
- •Р аспад нуклеиновых кислот, нуклеазы пищеварительного тракта и тканей.
- •Р аспад пуриновых нуклеотидов.
- •Общие принципы синтеза мононуклеотидов
- •П роисхождение атомов «с» и «n» в пуриновом кольце
- •Инозиновая кислота как предшественник пуриновых мононуклеотидов
- •Распад пиримидиновых нуклеотидов
- •Б иосинтез пиримидиновых нуклеотидов .Регуляция биосинтеза пуриновых и пиримидиновых мононуклеотидов.
- •Биосинтез дезоксирибонуклеотидов
- •Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей
- •Нарушения обмена нуклеотидов
- •Строение нуклеиновых кислот
- •Биосинтез (репликация) днк
- •Этапы репликации
- •Синтез днк и фазы клеточного деления.
- •Повреждение и репарация днк
- •Б иосинтез рнк
- •Понятие о мозаичной структуре генов
- •Биосинтез белка
- •Биологический код
- •Транспортная рнк как адаптор аминокислот
- •Субстратная специфичность арс-аз изоакцепторные т-рнк.
- •Строение рибосомы
- •Посттрансляционный процессинг белков
- •Адаптивная регуляция экспрессии генов у прокариотов и эукариотов
- •Теория оперона строение и функционирование лактозного оперона
- •Роль энхансеров, селенсеров,
- •Распад клеточных белков
- •Время полужизни разных белков
- •Клеточная дифференцировка
- •Изменение белкового состава клеток при дифференцировке (На примере белкового состава полипептидных цепей гемоглобина)
- •Молекулярные механизмы генетической изменчивости
- •Р екомбинация как источник генетической изменчивости
- •Генетическая гетерогенность
- •Н аследственные болезни
Строение нуклеиновых кислот
К
аждый
нуклеотид содержит 3 химически различных
компонента: гетероциклическое азотистое
основание, моносахарид (пентозу) и
остаток фосфорной кислоты. В зависимости
от числа имеющихся в молекуле остатков
фосфорной кислоты различают
нуклеозидмонофосфаты (НМФ), нуклеозиддифосфаты
(НДФ), нуклеозидтрифосфаты (НТФ) .
В состав нуклеиновых кислот входят азотистые основания двух типов: пуриновые - аденин (А), гуанин(G) и пиримидиновые - цитозин (С), тимин (Т) и урацил (U).
Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинуклеотидной цепи.
Каждая фосфатная группа в полинуклеотидной цепи, за исключением фосфорного остатка на 5'-конце молекулы, участвует в образовании двух эфирных связей с участием 3'- и 5'-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3', 5'-фосфодиэфирной.
Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа, а на 3'-конце цепи - свободная ОН-группа.
Н
.
к. обладают видовой специфичностью, т.
е. у каждого вида характеризуются
определённым нуклеотидным составом.
Биосинтез (репликация) днк
матричный (матрица – обе нити ДНК)
комплиментарный
фрагментарный (нити ДНК синтезируются в виде фрагментов, которые затем соединяются между собой)
полуконсервативный (в каждой из образовавшихся молекул ДНК одна нить исходная – материнская, а одна – вновь синтезированная – дочерняя)
Живые организмы в течение S-фазы клеточного цикла, которая предшествует делению клетки, удваивают содержание ДНК Процесс удвоения хромосом называют репликацией (редупликацией).
Хромосома содержит одну непрерывную двух-цепочечную молекулу ДНК. При репликации каждая цепь родительской двухцепочечной ДНК служит матрицей для синтеза новой комплементарной цепи. Вновь образованная двойная спираль имеет одну исходную (родительскую) и одну вновь синтезированную (дочернюю)цепь. Такой механизм удвоения ДНК получил название «полуконсервативная репликация». Первичная структура дочерней цепи определяется первичной структурой родительской цепи, потому что в основе её образования лежит принцип комплементарности оснований (G = C и A = T).
Д
НК–РЕПЛИКАТИВНЫЙ
КОМПЛЕКС
Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Субстратами и источниками энергии для синтеза продукта служат 4 макроэргических соединения - дезоксирибонуклеозидтрифосфаты: дАТФ, дГТФ, дЦТФ и дТТФ, для активации которых необходимы ионы магния. Нейтрализуя отрицательный заряд нуклеотидов, они повышают их реакционную способность. Ферменты проявляют каталитическую активность только в присутствии предварительно раскрученной матричной двухцепочечной ДНК. Синтез цепей ДНК происходит в направлении 5'-3' растущей цепи, т.е. очередной нуклеотид присоединяется к свободному З'-ОН-концу предшествующего нуклеотидного остатка. Синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, представляющие собой копии матричных цепей.
В синтезе эукариотических ДНК принимают участие 5 ДНК-полимераз (α, β, γ, δ, ε). ДНК-полимеразы различают по числу субъединиц, молекулярной массе, ассоциации с разными вспомогательными белками, ускоряющими процесс биосинтеза ДНК, и функциональному назначению. ДНК-полимеразы α (альфа), β (бета), δ (дельта), ε (эпсилон) участвуют в синтезе ДНК в ядре клеток, ДНК-полимераза γ (гамма) - в репликации митохондриальной ДНК. ДНК-полимеразы β, δ, ε не могут инициировать образование дочерних цепей, так как не имеют сродства к одиночной нити ДНК.
Инициирует репликацию ДНК-полимераза α, которая комплементарна определённому сайту одноце-почечной ДНК. Присоединяясь к нему, ДНК-полимераза α синтезирует небольшой фрагмент РНК - праймер, состоящий из 8-10 рибо-нуклеотидов. ДНК-полимераза α состоит из четырёх субъединиц. Каждая из субъединиц фермента выполняет определённую функцию: «узнавание» сайта репликации, синтез прайме-ра (8-10 рибонуклеотидов), синтез фрагмента цепи ДНК, около 50 дезоксирибонуклеотидов. Таким образом, ДНК-полимераза α синтезирует олигонуклеотид, содержащий примерно 60 нуклеотидньгх остатков; первые 8-10 представлены рибонуклеотидами (праймер), а остальные - дезоксирибонуклеотидами