
- •Р аспад нуклеиновых кислот, нуклеазы пищеварительного тракта и тканей.
- •Р аспад пуриновых нуклеотидов.
- •Общие принципы синтеза мононуклеотидов
- •П роисхождение атомов «с» и «n» в пуриновом кольце
- •Инозиновая кислота как предшественник пуриновых мононуклеотидов
- •Распад пиримидиновых нуклеотидов
- •Б иосинтез пиримидиновых нуклеотидов .Регуляция биосинтеза пуриновых и пиримидиновых мононуклеотидов.
- •Биосинтез дезоксирибонуклеотидов
- •Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей
- •Нарушения обмена нуклеотидов
- •Строение нуклеиновых кислот
- •Биосинтез (репликация) днк
- •Этапы репликации
- •Синтез днк и фазы клеточного деления.
- •Повреждение и репарация днк
- •Б иосинтез рнк
- •Понятие о мозаичной структуре генов
- •Биосинтез белка
- •Биологический код
- •Транспортная рнк как адаптор аминокислот
- •Субстратная специфичность арс-аз изоакцепторные т-рнк.
- •Строение рибосомы
- •Посттрансляционный процессинг белков
- •Адаптивная регуляция экспрессии генов у прокариотов и эукариотов
- •Теория оперона строение и функционирование лактозного оперона
- •Роль энхансеров, селенсеров,
- •Распад клеточных белков
- •Время полужизни разных белков
- •Клеточная дифференцировка
- •Изменение белкового состава клеток при дифференцировке (На примере белкового состава полипептидных цепей гемоглобина)
- •Молекулярные механизмы генетической изменчивости
- •Р екомбинация как источник генетической изменчивости
- •Генетическая гетерогенность
- •Н аследственные болезни
Молекулярные механизмы генетической изменчивости
И
зменения
в геноме могут быть разнообразны и
затрагивать различные по протяжённости
участки ДНК от хромосом и генов до
отдельных нуклеотидов. Наиболее
драматичны геномные и хромосомные
мутации, часто наблюдаемые на уровне
соматических клеток. Если они имеют
место в половых клетках, то для организма
это имеет чаще всего летальные последствия.
Частота мутаций в половых клетках
высока. Существуют данные, указывающие
на то, что в 20% случаев при беременности
у эмбрионов наблюдают нарушения структуры
хромосом. В 90% случаев это приводит к
ненормальному развитию плода и
элиминированию зародышей в результате
спонтанных абортов. Выкидыши, происходящие
в течение первых нескольких недель
беременности, связаны с серьёзными
нарушениями хромосом. В 50% случаев
отмечается трисомия по аутосомам, т.е.
вместо пары хромосом наблюдаются три.
Пример такой патологии - болезнь Дауна,
при которой хромосома 21 присутствует
в 3 экземплярах. Некоторые генные мутации
закрепляются в популяции, становятся
наследственными и определяют эволюционные
процессы. С мутациями такого типа связано
появление различных наследственных
патологий, сопровождающихся прекращением
синтеза белка, кодируемого повреждённым
геном, либо синтезом изменённого белка.
МОЛЕКУЛЯРНЫЕ МУТАЦИИ
Частота мутаций. Считается, что средняя частота возникновения мутаций в структурных локусах (областях локализации гена в хромосоме или в молекуле ДНК) человека колеблется в пределах от 10-5 до 10-6 на одну гамету за каждое поколение. Однако эта величина может значительно варьировать для разных генов (от 10-4 для генов с высокой скоростью мутаций до 10-11 для наиболее устойчивых участков генома). Столь существенные колебания в частоте возникновения мутаций обусловлены характером мутационного повреждения, механизмом возникновения мутации, протяжённостью кодирующей области мутантного гена, функциями белка, закодированного в этом гене. Спрашивается, каким же образом человечество справляется с такой мутационной нагрузкой? Отвечая на этот вопрос, следует помнить, что кодирующие части генов, изменения в которых наиболее опасны, занимают не более 10% генома. Ситуация облегчается ещё и тем, что далеко не каждая мутация в кодирующей области имеет фенотипическое проявление. Многие попадают в 3'-положение кодонов и, таким образом, являются "молчащими", так как благодаря вырожденности генетического кода они не приводят к аминокислотным заменам, другие оказываются в доменах, несущественных для функционирования белков. Потомству передаются мутации, происходящие в гаметах, а их процент совсем невелик.
Виды мутаций |
Изменения в структуре ДНК |
Изменения в структуре белка |
ЗАМЕНА |
|
|
Без изменения смысла кодона |
Замена одного нуклеотида в кодоне |
Белок не изменён |
С изменением смысла кодона (миссенс-мутация) |
|
Происходит замена одной аминокислоты на другую |
С образованием терминирующего кодона (нонсенс-мутация) |
|
Синтез пептидной цепи прерывается, и образуется укороченный продукт |
ВСТАВКА |
|
|
Без сдвига «рамки считывания» |
Вставка фрагмента ДНК из 3 нуклеотидов или с числом нуклеотидов, кратным 3 |
Происходит удлинение полипептидной цепи на одну или несколько АК |
Со сдвигом «рамки считывания» |
Вставка одного или нескольких нуклеотидов, не кратных 3 |
Пептид со «случайной» последовательностью АК, изменяется смысл всех кодонов, следующих за местом мутации |
ДЕЛЕЦИЯ |
|
|
Без сдвига «рамки считывания» |
Выпадение фрагмента ДНК из 3 нуклеотидов или с числом нуклеотидов, кратным 3 |
Происходит укорочение белка на одну или несколько аминокислот |
Со сдвигом «рамки считывания» |
Выпадение одного или нескольких нуклеотидов, не кратных 3 |
Синтезируется пептид со «случайной» последовательностью аминокислот, так как изменяется смысл всех кодонов, следующих за местом мутации |
МЕХАНИЗМЫ УВЕЛИЧЕНИЯ ЧИСЛА
И РАЗНООБРАЗИЯ ГЕНОВ В ГЕНОМЕ