Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_ESUA_moya.docx
Скачиваний:
32
Добавлен:
21.01.2021
Размер:
7.15 Mб
Скачать

Вопрос № 50

Датчики частоты вращения служат для определения числа оборотов вала двигателя за единицу времени и применяются в регулируемых приводных системах. В настоящее время широкое распространение получили магнитно-индукционные датчики частоты вращения (тахогенераторы), генерирующие электрические импульсы напряжения приблизительно синусоидальный формы. Частота этого сигнала пропорциональна частоте вращения вала двигателя. Магнитно-индукционный датчик состоит из катушки индуктивности, внутри которой находится сердечник из мягкой стали, соединенный с постоянным магнитом. Стальной сердечник расположен через небольшой воздушный зазор прямо над кромкой зубчатого кольца (диска), находящегося в магнитном поле постоянного магнита. Если прямо напротив датчика попадает зуб кольца, то он концентрирует магнитное поле и усиливает поток магнитной индукции в катушке, а если напротив датчика становится впадина зубчатки, то магнитный поток ослабевает. Такие два состояния датчика постоянно чередуются при вращении зубчатого кольца вместе с валом, частота вращения которого и является измеряемой характеристикой. В катушке наводятся импульсы напряжения переменного тока, частота которых свидетельствует о частоте вращения вала.

Датчик скорости перемещения автомобиля сконструирован по принципу эффекта Холла и выдает на контроллер частотно-импульсный сигнал. Частота сигнала прямопропорциональна скорости движения автомобиля. Контроллер использует этот сигнал для управления работой двигателя на холостом ходу и посредством регулятора холостого хода, управляет подачей воздуха в обход дроссельной заслонки. Датчик выдает примерно 6004 импульса на каждый километр пройденного автомобилем пути. По временному интервалу между импульсами контроллер определяет скорость движения автомобиля. Кроме того, данный сигнал может использоваться спидометром, установленным на панели приборов.

Датчики положения выполняются контактными или бесконтактными. Несмотря на то, что предпочтение отдается бесконтактным датчикам, контактные устройства еще широко применяются. При всех достоинствах, контактные датчики имеют один существенный недостаток – склонность к загрязнению и, соответственно, снижение точности измерений. К контактным датчикам положения относятся потенциометры с подвижными контактами, которые измеряют линейные и угловые перемещения объекта. Подвижные контакты перемещаются по длине переменного резистора и изменяют его сопротивление, пропорциональное фактическому перемещению объекта. В основу работы бесконтактных датчиков положения положены различные физические явления и эффекты, и соответствующие им датчики: индуктивные, магниторезистивные и множество других.

- Индуктивный датчик широко используется в качестве датчика положения коленчатого вала. Он содержат постоянный магнит, магнитопровод и катушку. Когда стальной объект (зуб шестерни) приближается к датчику, магнитное поле увеличивается, а в катушке наводится переменное напряжение.

- В магниторезистивных датчиках положения используется зависимость электрического сопротивления магниторезистивных пластинок от направления и величины индукции внешнего магнитного поля. Датчик, как правило, состоит из постоянного магнита и электрической схемы, содержащей включённые по мостовой схеме магниторезистивные пластинки и источник постоянного напряжения. Интересующий объект, состоящий из ферромагнитного материала, перемещаясь в магнитном поле, изменяет его конфигурацию, вследствие чего изменяется сопротивление пластинок, и мостовая схема регистрирует рассогласование, по величине которого можно судить о положении объекта.

В датчике давления применяется пьезорезисторный эффект, который заключается в изменении сопротивления тензорезистора при механическом растяжении диафрагмы. Измеряемое давление может быть абсолютным или относительным. Датчик давления во впускном коллекторе измеряет абсолютное давление, т.е. давление воздуха относительно вакуума.

Датчик детонации оценивает вибрацию двигателя, которая сопровождает неконтролируемое воспламенение топливно-воздушной смеси. Датчик представляет собой пьезоэлектрический элемент, который при вибрации генерирует электрический сигнал.

В датчикахтемпературы применяются терморезисторы с отрицательным температурным коэффициентом. С увеличением температуры сопротивление термистора снижается, соответственно возрастает ток. В качестве датчика температуры используется также термопара – проводник, состоящий из двух различных металлов и под воздействием температуры генерирующий электрическое напряжение.

Среди датчиков объемного и массового расхода воздуха наибольшее применение нашли микромеханические расходомеры, построенные на тонкопленочных нагреваемых элементах - терморезисторах. Воздух, проходя через терморезисторы, охлаждает их. При этом, чем больше проходит воздуха, тем сильнее охлаждаются терморезисторы. Определение массового расхода воздуха построено на измерении мощности и тока, необходимых для поддержания постоянной температуры терморезисторов.

Примером датчика состава газов служит кислородный датчик (лямбда-зонд). Принцип действия кислородного датчика основан на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.