Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Равномерное распределение.doc
Скачиваний:
104
Добавлен:
08.02.2015
Размер:
628.74 Кб
Скачать

Значение

С помощью линейного преобразования приводится к равномерному распределению на отрезке [0,1]. Равномерное распределение является непрерывным аналогом распределений классической теории вероятностей, описывающих случайные эксперименты с равновероятными исходами.

Погрешность, происходящая от округления числа, удовлетворительно описывается равномерным распределением на отрезке [ − 1 / 2,1 / 2].

Если случайная величина ζ имеет непрерывную функцию распределения , то случайная величина имеет равномерное распределение на отрезке [0,1]. Этим объясняется широкое использование равномерного распределения в статистическом моделировании (методы Монте-Карло).

Моделирование

Обозначим буквой случайную величину с равномерным распределением на отрезке . Для этой случайной величины функция распределения и плотность распределения вероятностей соответственно имеют вид:

Если , то вероятность

Моделировать случайную величину можно многими способами.

Мы рассмотрим метод псевдослучайных последовательностей, который наиболее просто реализуется в компьютере. Для получения псевдослучайной последовательности используем алгоритм, который называется методом середины квадратов. Поясним его на примере. Возьмем некоторое число . Пусть Возведем его в квадрат: .Выберем четыре средние цифры этого числа и положим . Затем возводим в квадрат: и снова выбираем четыре средние цифры. Получаем . Далее находим и т. д. Последовательность чисел принимают за последовательность значений случайной величины , имеющей равномерное распределение на отрезке . Для оценки степени приближения последовательности к последовательности случайных чисел с равномерным распределением используют статистические критерии.

Метод обратных функций.

Пусть случайная величина имеет монотонно возрастающую функцию распределения . Известно, что , значит, случайная величина с монотонно возрастающей функцией распределения связана со случайной величиной соотношением:

Отсюда следует, что значение случайной величины является решением уравнения:

где значение случайной величины , то есть:

Последовательности значений случайной величины соответствует последовательность значений случайной величины с функцией распределения .

Моделирование случайной величины с равномерным распределением на отрезке

Пусть случайная величина имеет равномерное распределение на отрезке . Тогда её функция распределения имеет описанный выше вид. Тогда по методу обратных функций получаем:

Составляем уравнение , откуда

Последовательности значений случайной величины соответствует последовательность значений: случайной величины , равномерно распределённой на отрезке .

Порядковые статистики.

Случайная величина , которая при каждой реализации выборки принимает значение , называется k-ой порядковой статистикой.

Для случая распределения порядковых статистик имеют вид:

При этом:

А также:

Если же , то плотность совместного распределения экстремальных значений выборки и имеет вид:

А также:

Отметим далее, что если и - независимые равномерно распределённые величины на отрезке [0,1], то величины - независимы и нормально распределены с параметрами (0,1).

Оценивание параметров в равномерном распределении.

Введём статистический аналог теоретического математического ожидания случайной величины :

- выборочное среднее.

Введём статистический аналог теоретической дисперсии случайной величины :

- выборочная дисперсия.

Любая измеримая функция от выборки называется статистикой.

Статистика называется несмещённой оценкой для заданной параметрической функции если она удовлетворяет условию:

Статистика для заданной параметрической функции называется состоятельной, если

То есть для любого при для любого .

  • Возьмём выборку из распределения и оценим параметр θ. Рассмотрим класс оценок вида

Оптимальной несмещённой оценкой θ в данном классе оценок является:

Её дисперсия:

.

  • Оценим теперь параметр θ равномерного распределения по выборке Тогда:

Статистики и - несмещённые.

Кроме того, имеем: то есть оценка точнее. Более того, при то есть оценка состоятельная. Оценка же не обладает этим свойством.

  • Пусть теперь - выборка из . Тогда статистики и несмещённые и состоятельные оценки функций и соответственно.