Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sbor_z_u_m (1)

.pdf
Скачиваний:
79
Добавлен:
08.02.2015
Размер:
6.56 Mб
Скачать

Подынтегральная функция терпит бесконечный разрыв в точке b = 3; устно проверяем, что с другим пределом интегрирования всё нормально.

Для разнообразия решим этот предел сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.

Добавка (-0) обозначает, что предел у нас левосторонний, и к точке b=3 мы приближаемся по оси OX слева, оставаясь меньше 3.

Разбираемся, почему дробь

(это лучше делать устно или на черновике). Подставляем под корень предельное значение b = 3 - 0.

и тогда

.

Окончательно:

.

Несобственный интеграл расходится.

Знак минус обозначает, что соответствующая криволинейная трапеция расположена под осью

OX. Будьте очень внимательны в знаках.

Да, конечно, здесь несобственный интеграл расходится, но и – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.

И заключительные два примера для самостоятельного рассмотрения:

Пример 10 Вычислить несобственный интеграл или установить его расходимость.

.

Пример 11 Вычислить несобственный интеграл или установить его расходимость.

.

Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения определённых и несобственных интегралов.

341

Решения и ответы:

Пример 4: Решение:

.

Подынтегральная функция непрерывна на .

Пример 5: Решение:

.

Подынтегральная функция непрерывна на .

.

Несобственный интеграл расходится.

Пример 7: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Несобственный интеграл расходится. Примечание: с пределом выражения

можно разобраться следующим образом: вместо подставляем (-1)+0:

Пример 8: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

342

Примечание: Разбираемся в пределе выражения

. Если

, то

(см. график логарифмической функции!), тогда:

 

 

 

.

 

Именно эти соображения и помечаются, как

 

 

 

.

 

Пример 10: Решение:

 

 

Подынтегральная функция терпит бесконечный разрыв в точке b = 1

Пример 11: Решение:

.

Подынтегральная функция терпит бесконечный разрыв в точке

.

Несобственный интеграл расходится

Примечание: Разбираемся в пределе выражения

.

Если

 

,

то

,

и тогда

 

.

Будьте очень внимательны в знаках!

343

8.4. Эффективные методы решения определенных и несобственных интегралов

Данный раздел содержит дополнительные материалы по методам решения определенных и несобственных интегралов. Предполагается, что читатель владеет средними или высокими навыками интегрирования. Если это не так, пожалуйста, начните с азов: Неопределенный интеграл, примеры решений.

Где неопределенный интеграл – там неподалёку и Определенный интеграл, с формулой Ньютона-Лейбница вы тоже должны быть знакомы не понаслышке. Кроме того, уметь решать простейшие задачи на вычисление площади плоской фигуры (см. 7.2.3.) и на вычисление объёма тела вращения (см. 7.2.4.).

Урок предназначен для тех, кто хочет научиться быстрее и эффективнее решать определенные и несобственные интегралы. Сначала рассмотрим особенности интегрирования четной и нечетной функции по симметричному относительно нуля интервалу. Затем мы разберем задачу о нахождении площади круга с помощью определенного интеграла. Эта задача важна еще и тем, что знакомит вас с распространенным приемом интегрирования определенного интеграла – тригонометрической подстановкой. Она еще нигде не рассматривалась – новый материал!

Аналогично, рассмотрим несобственные интегралы от четных и нечетных функций по симметричному интервалу. В том числе, более редкие типы несобственных интегралов, которые не вошли в основной материал предыдущих разделов: когда нижний предел стремится к «минус бесконечности», когда оба предела стремятся к бесконечности, когда в обоих концах отрезка интегрирования функция терпит бесконечный разрыв (это уже интеграл второго рода). И совсем редкий несобственный интеграл – с точкой разрыва на отрезке интегрирования.

8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку

Рассмотрим определенный интеграл вида

.

Легко заметить, что отрезок интегрирования [-c; c] симметричен относительно нуля. Если подынтегральная функция f(x) является чётной, то интеграл

можно вычислить по половине отрезка, а результат – удвоить:

.

Многие догадались, почему это так, но рассмотрим конкретный пример с чертежом:

Пример 1

344

Вычислить определенный интеграл

.

О чётности функции много говорилось в методическом материале Графики и свойства элементарных функций. Повторим ещё раз: функция является чётной, если для неё выполняется равенство f(-x) = f(x).

Как проверить функцию на чётность? Нужно вместо x подставить -x.

В данном случае: и . Значит, данная функция является чётной.

Согласно правилу, на симметричном относительно нуля отрезке [-2; 2] наш интеграл от чётной функции можно вычислить следующим образом:

А сейчас геометрическая интерпретация. Да, продолжаем мучить несчастную параболу….

Любая чётная функция, в частности , симметрична относительно оси OY:

Определенный интеграл

численно равен площади плоской фигуры, которая заштрихована зеленым цветом. Но, в силу чётности подынтегральной функции, а, значит, и симметричности её графика относительно оси OY, достаточно вычислить площадь фигуры, заштрихованной синим цветом, а результат – удвоить. Одинаковые половинки есть геометрическое выражение свойства четности. Именно поэтому справедливо действие

.

Аналогичная история происходит с любой чётной функцией f(x) по симметричному относительно нуля отрезку:

345

.

Некоторые скажут: «Да зачем это всё нужно, можно ведь и так вычислить определенный интеграл». Можно. Давайте вычислим:

Но удобно ли было подставлять отрицательный нижний предел? Не очень-то. Кстати, ненулевой процент студентов допустит ошибку в знаках. Гораздо проще и приятнее подставить ноль. Заметим, что это еще был простой демонстрационный пример, на практике всё бывает хуже.

Кроме того, рассматриваемый прием часто применяется при вычислении двойных интегралов, тройных интегралов, где вычислений и так хватает.

Короткий пример для самостоятельного решения:

Пример 2 Вычислить определенный интеграл

.

Полное решение и ответ в конце урока.

Обратите внимание, что когда вам предложено просто вычислить определенный интеграл, то чертеж выполнять не нужно! Рисунок к Примеру 1 дан только для того, чтобы было понятно правило. Как раз данному моменту посвящена следующая простая задачка:

Пример 3 3.1. Вычислить определенный интеграл

.

3.2. Вычислить площадь плоской фигуры, ограниченной линиями

, и осью OX на интервале .

Это две разные задачи! Сначала разберемся с первым пунктом:

1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:

.

Определенный интеграл получился отрицательным и так бывает!

Теперь найдем площадь плоской фигуры. Вот здесь без чертежа обойтись трудно:

346

На отрезке график функции расположен ниже оси OX, поэтому:

Площадь не может быть отрицательной, именно поэтому в формуле вычисления площади добавляют минус (см. также Пример 3 из раздела 7.2.3.).

Заметьте, что чётность косинуса никто не отменял, поэтому мы опять разделили отрезок и удвоили интеграл.

Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка

Это очень важная задача, поскольку будет рассмотрен типовой интеграл и приём решения, который неоднократно встретится в будущем.

Но сначала небольшое напоминание по уравнению окружности. Уравнение вида задаёт окружность с центром в точке радиуса .

В частности, уравнение задаёт окружность радиуса с центром в начале координат, в точке (0; 0).

Пример 4

Вычислить площадь круга, ограниченного окружностью с уравнением . Выполним чертёж:

347

Сначала вычислим площадь круга с помощью известной школьной формулы. Если радиус круга , то его площадь равна: S = π∙r2 = π∙22 = 4π ед2.

Для того, чтобы вычислить площадь круга с помощью определенного интеграла, необходимо из уравнения выразить функцию «игрек» от «икс» в явном виде:

Верхняя полуокружность задается уравнением .

Нижняя полуокружность задается уравнением .

Можно подставить несколько точек окружности в эти уравнения и убедиться в справедливости вышеизложенных утверждений.

Как вычислить площадь круга? В данном примере круг симметричен относительно начала координат, поэтому достаточно вычислить площадь одного сектора в 1-ой четверти (заштрихован синим цветом), а затем результат умножить на 4. Таким образом:

.

Такой же, но неопределенный интеграл рассматривался в Примере 6 раздела Сложные интегралы, он решался длительным и трудоёмким методом сведения интеграла к самому себе. Можно пойти тем же путём, но для определенного интеграла существует удобный и эффективный метод тригонометрической замены:

Проведём замену:

Почему именно такая замена, очень скоро станет понятно, а пока найдем дифференциал:

Выясним, во что превратится корень, который распишем очень подробно:

.

Если в ходе решения вы не сможете догадаться применить формулу наподобие , то, увы, получите: «Приходите в следующий раз».

После преобразования корня отчетливо видно, почему проведена замена , особое внимание обращаем на коэффициент при синусе – «двойке», этот коэффициент нужно подбирать таким образом, чтобы при возведении в квадрат всё хорошо вынеслось за скобки и из-под корня.

Осталось вычислить новые пределы интегрирования:

Если , то .

Новый нижний предел интегрирования: .

Новый верхний предел интегрирования: . Таким образом:

.

Площадь сектора необходимо умножить на 4, следовательно, площадь всей окружности:

348

Вероятно, у некоторых возник вопрос, зачем вообще мучиться с интегралом, если есть короткая школьная формула S = π∙r2? А дело в том, что возможность очень точно вычислить площадь круга появилась только с развитием математического анализа, хотя уже в древности Архимед площадь круга рассчитывал с приличной точностью.

Разобранный пример можно решить в общем виде, то есть найти площадь круга, ограниченного

окружностью произвольного радиуса: . В результате получится как раз формула S =

π∙r2!

Следует отметить, что к решению данной задачи можно было применить и другой подход – вычислить площадь верхнего полукруга с помощью интеграла

,

а затем удвоить результат. Но в силу чётности подынтегральной функции решение сводится к оптимальной версии:

.

Еще раз подчеркнём важность проведенной тригонометрической замены, она встретится на практике не раз и не два. Поэтому, для закрепления материала, чуть - более сложное задание для самостоятельного решения:

Пример 5 Вычислить определенный интеграл

.

По условию требуется вычислить определенный интеграл, поэтому чертеж выполнять не

нужно. Хорошо подумайте над коэффициентом в замене . Если возникнут трудности с интегралом после замены, вернитесь к уроку Интегралы от тригонометрических функций. Полное решение и ответ в конце урока.

8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку

Вам понравится. Рассмотрим тот же определенный интеграл с симметричным относительно нуля отрезком интегрирования:

.

Если подынтегральная функция f(x) является нечётной, то

.

Почему такой интеграл равен нулю?

349

Пример 6 Вычислить определенный интеграл

Выполним чертеж:

Вот, заодно и график функции , который ещё нигде у нас не встречался, график представляет собой перевёрнутую кубическую параболу.

Проверим нашу функцию на четность/нечетность:

,

значит, данная функция является нечётной, и её график симметричен относительно начала координат. Из симметрии графика следует равенство площадей, которые заштрихованы красным и синим цветом.

При вычислении определенного интеграла

площадь, которая заштрихована синим цветом, формально является отрицательной. А площадь, которая заштрихована красным цветом – положительной. Поскольку площади равны и формально противоположны по знаку, то они взаимно уничтожаются, следовательно

.

И еще раз подчеркиваем разницу между заданиями:

1) Любой определенный интеграл (само собой он должен существовать) – это всё равно формально площадь (пусть даже отрицательная). В частности, поэтому

,

так как в силу нечётности функции площади взаимно уничтожатся. Что и проиллюстрировано на конкретном примере.

2) Задача на нахождение площади – это совершенно другая задача. Так, если нам предложено найти площадь фигуры в данном примере, то её следует вычислить, как:

.

Еще несколько коротких примеров на тему данного правила:

350

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]