Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sbor_z_u_m (1)

.pdf
Скачиваний:
79
Добавлен:
08.02.2015
Размер:
6.56 Mб
Скачать

вычислениях встретится, например, , то минус терять здесь ни в коем случае

нельзя! Он выносится: .

Как ведет себя синус на бесконечности? Попробуем провести исследование с помощью

пределов: , Чему равны такие пределы? Запомните, данных пределов не существует. По вполне понятным причинам, график синуса болтается как неприкаянный, то дойдет единицы, то уйдет к минус единице и так до бесконечности.

Вот вам пример, когда предела не существует. В высшей математике это можно встретить не очень часто, но такое понятие, как «предела не существует» – существует!

В практических вычислениях желательно (и даже обязательно) знать и помнить следующие значения синуса: , , .

Другие значения синуса (а также остальных тригонометрических функций) можно найти в методическом материале Тригонометрические таблицы.

График косинуса

Построим график функции

График косинуса – это та же самая синусоида, сдвинутая вдоль оси на влево.

Поэтому почти все свойства синуса справедливы и для косинуса. За некоторым, но существенным исключением.

Косинус – это функция четная, ее график симметричен относительно оси , и справедлив

следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить).

В отличие от синуса в косинусе минус «бесследно пропадает».

Для решения практических задач нужно знать и помнить следующие значения косинуса:

, , .

Графики тангенса и котангенса

111

Построим график функции

Основные свойства функции

:

 

Данная функция является

периодической с периодом

. То есть, достаточно

рассмотреть отрезок , слева и справа от него ситуация будет бесконечно повторяться.

Область определения: – все действительные числа, кроме

, , , … и т. д. или коротко: , где – любое целое число. Множество целых чисел (… -4, -3, -2, -1, 0, 1, 2, 3, 4, …) в высшей математике обозначают жирной буквой Z.

Область значений: . Функция не ограничена. В этом легко убедиться и аналитически:

– если мы приближаемся по оси к значению справа, то ветка тангенса уходит на минус бесконечность, бесконечно близко приближаясь к своей асимптоте

.

– если мы приближаемся по оси к значению слева, то «игреки» шагают вверх на плюс бесконечность, а ветка тангенса бесконечно близко приближается к асимптоте

.

112

Тангенс – функция нечетная, как и в случае с синусом, минус из-под тангенса не теряется, а выносится: .

В практических вычислениях полезно помнить следующие значения тангенса: , ,

, а также те точки, в которых тангенса не существует (см. график).

График котангенса – это почти тот же самый тангенс, функции связаны тригонометрическим

соотношением . Вот его график:

Свойства попробуйте сформулировать самостоятельно, они практически такие же, как и у тангенса.

Графики обратных тригонометрических функций

Построим график арксинуса

113

Перечислим основные свойства функции :

Область определения:, не существует значений вроде или

Область значений: , то есть, функция ограничена.

Арксинус – функция нечетная, здесь минус опять же выносится:

.

В практических вычислениях полезно помнить следующие значения арксинуса: ,

, . Другие распространенные значения арксинуса (а также других

«арков») можно найти с помощью таблицы значений обратных тригонометрических функций.

Построим график арккосинуса

114

Очень похоже на арксинус, свойства функции сформулируйте самостоятельно. Остановлюсь на единственном моменте. В данной статье очень много разговоров шло о четности и нечетности функций, и, возможно, у некоторых сложилось впечатление, что функция обязательно должна быть четной или нечетной.

В общем случае, это, конечно, не так. Чаще всего, функция, которая вам встретится на практике – «никакая». В частности, арккосинус не является четной или нечетной функцией, он как раз «никакой», или, строго говоря – это «функция общего вида по

отношению к свойству чётности».

Построим график арктангенса

Всего лишь перевернутая ветка тангенса.

115

Перечислим основные свойства функции :

Область определения:, или «множество всех действительных чисел»

Область значений: , то есть, функция ограничена.

У рассматриваемой функции есть две асимптоты: , .

Арктангенс – функция нечетная: .

Самые «популярные» значения арктангенса, которые встречаются на практике, следующие:

, .

К графику арккотангенса приходиться обращаться значительно реже, но, тем не менее, вот его чертеж:

Свойства арккотангенса вы вполне сможете сформулировать самостоятельно. Отметим, что арккотангенс, как и арккосинус, не является четной или нечетной функцией, а является «функцией общего вида по отношению к свойству чётности».

116

6. Пределы функций

Теория пределов – это один из разделов математического анализа. Попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Мы не будем рассматривать строгое определение предела, а сделаем две вещи:

*Поймём, что такое предел.

*Научимся решать основные типы пределов.

Итак, что же такое предел?

Пример: .

Любой предел состоит из трех частей:

1)Всем известный значок предела (это сокращение латинского слова limes - предел).

2)Запись под значком предела, в данном случае . Запись читается: «икс стремится к единице». Чаще всего – именно x, хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().

3)Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?

Понятие предела – это понятие, если так можно сказать, динамическое. Построим

последовательность: сначала , затем , , …, , ….

То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически

с ней совпадают.

6.1. Основные методы вычисления пределов

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Готово.

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить

число в функцию.

Пример с бесконечностью:

Разбираемся, что такое

? Это тот случай, когда

неограниченно возрастает, то есть:

сначала

, потом

, потом

, затем

и так далее до

бесконечности.

 

 

 

А что в это время происходит с функцией

?

 

,

,

, …

 

 

117

Итак: если , то функция стремится к минус бесконечности:

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в

функцию бесконечность и получаем ответ.

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:

Вывод: при

функция

неограниченно возрастает

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , ,

, ,

Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.

В том случае, если , попробуйте построить последовательность , ,

. Если , то , , .

Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом

вверху, да хоть с миллионом: , то все равно , так как рано или

поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом.

Что нужно запомнить и понять из вышесказанного?

1)Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2)Вы должны понимать и сразу решать простейшие пределы, такие как

, , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций. После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с очень интересными случаями, когда предела функции вообще не существует!

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов.

118

6.1.1. Пределы с неопределенностью вида и метод их решения

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример 1

Вычислить предел Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас

получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что

, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

.

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность

необходимо разделить числитель и знаменатель на в старшей степени.

Разделим числитель и знаменатель на

Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно

использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

119

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметить недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо? Пример 2

Найти предел .

Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3 Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.

Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и

знаменатель на .

Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на :

Пример 3

Найти предел Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 ( можно записать как )

Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

120

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]