
Sbor_z_u_m (1)
.pdf
вычислениях встретится, например, , то минус терять здесь ни в коем случае
нельзя! Он выносится: .
Как ведет себя синус на бесконечности? Попробуем провести исследование с помощью
пределов: ,
Чему равны такие пределы? Запомните, данных пределов не существует. По вполне понятным причинам, график синуса болтается как неприкаянный, то дойдет единицы, то уйдет к минус единице и так до бесконечности.
Вот вам пример, когда предела не существует. В высшей математике это можно встретить не очень часто, но такое понятие, как «предела не существует» – существует!
В практических вычислениях желательно (и даже обязательно) знать и помнить следующие значения синуса: ,
,
.
Другие значения синуса (а также остальных тригонометрических функций) можно найти в методическом материале Тригонометрические таблицы.
График косинуса
Построим график функции
График косинуса – это та же самая синусоида, сдвинутая вдоль оси на
влево.
Поэтому почти все свойства синуса справедливы и для косинуса. За некоторым, но существенным исключением.
Косинус – это функция четная, ее график симметричен относительно оси , и справедлив
следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить).
В отличие от синуса в косинусе минус «бесследно пропадает».
Для решения практических задач нужно знать и помнить следующие значения косинуса:
,
,
.
Графики тангенса и котангенса
111

Построим график функции
Основные свойства функции |
: |
|
Данная функция является |
периодической с периодом |
. То есть, достаточно |
рассмотреть отрезок , слева и справа от него ситуация будет бесконечно повторяться.
Область определения: – все действительные числа, кроме
,
,
,
… и т. д. или коротко:
, где
– любое целое число. Множество целых чисел (… -4, -3, -2, -1, 0, 1, 2, 3, 4, …) в высшей математике обозначают жирной буквой Z.
Область значений: . Функция
не ограничена. В этом легко убедиться и аналитически:
– если мы приближаемся по оси
к значению
справа, то ветка тангенса уходит на минус бесконечность, бесконечно близко приближаясь к своей асимптоте
.
– если мы приближаемся по оси
к значению
слева, то «игреки» шагают вверх на плюс бесконечность, а ветка тангенса бесконечно близко приближается к асимптоте
.
112

Тангенс – функция нечетная, как и в случае с синусом, минус из-под тангенса не теряется, а выносится: .
В практических вычислениях полезно помнить следующие значения тангенса: ,
,
, а также те точки, в которых тангенса не существует (см. график).
График котангенса – это почти тот же самый тангенс, функции связаны тригонометрическим
соотношением . Вот его график:
Свойства попробуйте сформулировать самостоятельно, они практически такие же, как и у тангенса.
Графики обратных тригонометрических функций
Построим график арксинуса
113

Перечислим основные свойства функции :
Область определения:, не существует значений вроде
или
Область значений: , то есть, функция
ограничена.
Арксинус – функция нечетная, здесь минус опять же выносится:
.
В практических вычислениях полезно помнить следующие значения арксинуса: ,
,
. Другие распространенные значения арксинуса (а также других
«арков») можно найти с помощью таблицы значений обратных тригонометрических функций.
Построим график арккосинуса
114

Очень похоже на арксинус, свойства функции сформулируйте самостоятельно. Остановлюсь на единственном моменте. В данной статье очень много разговоров шло о четности и нечетности функций, и, возможно, у некоторых сложилось впечатление, что функция обязательно должна быть четной или нечетной.
В общем случае, это, конечно, не так. Чаще всего, функция, которая вам встретится на практике – «никакая». В частности, арккосинус не является четной или нечетной функцией, он как раз «никакой», или, строго говоря – это «функция общего вида по
отношению к свойству чётности».
Построим график арктангенса
Всего лишь перевернутая ветка тангенса.
115

Перечислим основные свойства функции :
Область определения:, или «множество всех действительных чисел»
Область значений: , то есть, функция
ограничена.
У рассматриваемой функции есть две асимптоты: ,
.
Арктангенс – функция нечетная: .
Самые «популярные» значения арктангенса, которые встречаются на практике, следующие:
,
.
К графику арккотангенса приходиться обращаться значительно реже, но, тем не менее, вот его чертеж:
Свойства арккотангенса вы вполне сможете сформулировать самостоятельно. Отметим, что арккотангенс, как и арккосинус, не является четной или нечетной функцией, а является «функцией общего вида по отношению к свойству чётности».
116

6. Пределы функций
Теория пределов – это один из разделов математического анализа. Попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Мы не будем рассматривать строгое определение предела, а сделаем две вещи:
*Поймём, что такое предел.
*Научимся решать основные типы пределов.
Итак, что же такое предел?
Пример: .
Любой предел состоит из трех частей:
1)Всем известный значок предела (это сокращение латинского слова limes - предел).
2)Запись под значком предела, в данном случае . Запись читается: «икс стремится к единице». Чаще всего – именно x, хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность (
).
3)Функции под знаком предела, в данном случае .
Сама запись читается так: «предел функции
при икс стремящемся к единице».
Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое. Построим
последовательность: сначала , затем
,
, …,
, ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически
с ней совпадают.
6.1. Основные методы вычисления пределов
Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:
Готово.
Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить
число в функцию.
Пример с бесконечностью:
Разбираемся, что такое |
? Это тот случай, когда |
неограниченно возрастает, то есть: |
||
сначала |
, потом |
, потом |
, затем |
и так далее до |
бесконечности. |
|
|
|
|
А что в это время происходит с функцией |
? |
|
||
, |
, |
, … |
|
|
117

Итак: если , то функция
стремится к минус бесконечности:
Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в
функцию бесконечность и получаем ответ.
Еще один пример с бесконечностью:
Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:
Вывод: при |
функция |
неограниченно возрастает |
И еще серия примеров:
Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:
,
,
,
,
,
,
,
,
,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность
,
,
. Если , то
,
,
.
Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.
Также обратите внимание на следующую вещь. Даже если дан предел с большим числом
вверху, да хоть с миллионом: , то все равно
, так как рано или
поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом.
Что нужно запомнить и понять из вышесказанного?
1)Когда дан любой предел, сначала просто пытаемся подставить число в функцию.
2)Вы должны понимать и сразу решать простейшие пределы, такие как
,
,
и т.д.
Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций. После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с очень интересными случаями, когда предела функции вообще не существует!
На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов.
118

6.1.1. Пределы с неопределенностью вида и метод их решения
Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены
Пример 1
Вычислить предел Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас
получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что
, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.
Как решать пределы данного типа?
Сначала мы смотрим на числитель и находим в старшей степени:
Старшая степень в числителе равна двум.
Теперь смотрим на знаменатель и тоже находим в старшей степени:
.
Старшая степень знаменателя равна двум.
Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.
Итак, метод решения следующий: для того, чтобы раскрыть неопределенность
необходимо разделить числитель и знаменатель на в старшей степени.
Разделим числитель и знаменатель на
Вот оно как, ответ , а вовсе не бесконечность.
Что принципиально важно в оформлении решения?
Во-первых, указываем неопределенность, если она есть.
Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно
использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.
В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:
119

Для пометок лучше использовать простой карандаш.
Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметить недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо? Пример 2
Найти предел .
Снова в числителе и знаменателе находим в старшей степени:
Максимальная степень в числителе: 3 Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и
знаменатель на .
Полное оформление задания может выглядеть так:
Разделим числитель и знаменатель на :
Пример 3
Найти предел Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как
)
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на
. Чистовой вариант решения может выглядеть так:
Разделим числитель и знаменатель на
120