Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
коллоквиум1.docx
Скачиваний:
12
Добавлен:
07.02.2015
Размер:
143.53 Кб
Скачать

42. Магнитное поле прямолинейного проводника с током

Для получения спектра магнитного поля прямого проводника с током проводник пропускают сквозь лист картона. На картон насыпают тонкий слой железных опилок, и опилки слегка встряхивают. Под действием магнитного поля железные опилки располагаются по концентрическим окружностям. По касательным к ним расположатся и магнитные стрелки вокруг такого проводника с током.

Таким образом, линии магнитной индукции магнитного поля прямолинейного тока представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной к проводнику, с центром на оси проводника. Направление линий индукции определяется правилом правого винта: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитной индукции поля прямого проводника с током.

Магнитное поле кругового тока

Исследования показали, что линии магнитной индукции поля кругового тока не являются правильными окружностями (рис. 2), но они замыкаются, обходя проводник, по которому идет ток. Направление линий магнитной индукции можно определить с помощью правила правого винта (правило буравчика): если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока.

Магнитное поле соленоида

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи.Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида

Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу правой руки).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Зако́н Ампе́ра — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током.

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

Магнитобиоло́гия — одно из направлений радиобиологии неионизирующих излучений; раздел биофизики, изучающий биологические эффекты слабых низкочастотных магнитных полей, не вызывающих нагрева тканей. Соответствует несколько более общему англоязычному термину bioelectromagnetics, который не следует путать с термином bioelectromagnetism. Для магнитобиологических эффектов характерны свойства, ярко отличающие их от тепловых эффектов — часто они наблюдаются лишь в некоторых частотных и амплитудных интервалах переменных магнитных полей, зависят от одновременного присутствия постоянного магнитного или электрического поля, от поляризации поля.

44. Электрические колебания, электромагнитные колебания в системе проводников в случае, когда можно не учитывать электромагнитные поля в окружающем пространстве, а рассматривать только движения электрических зарядов в проводниках. Обычно это возможно в так называемых квазистационарных системах с размерами, малыми по сравнению с длиной электромагнитной волны.

ГЕНЕРАТОРЫ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы, формирующие синусоидальные колебания, называются генераторами синусоидальных, или гармонических колебаний. Если форма колебаний отличается от синусоидальной (прямоугольные, треугольные, пилообразные и т.д.), то такие генераторы называются импульсными, или релаксационными.

По принципу управления генераторы разделяются на две группы – генераторы с самовозбуждением (автогенераторы) и генераторы с внешним (независимым) возбуждением.

Возбуждение колебаний в RC генераторах обусловлено наличием в них обратной связи. При анализе ОС, проведенном в разделе 7, рассматривались “крайние точки”, в которых обратную связь можно было охарактеризовать либо как отрицательную, либо как положительную. Не учитывалось, что коэффициент усиления усилителя и коэффициент передачи цепи обратной связи в общем случае являются величинами комплексными.

Терапевтический контур

Генератор электрических колебаний составляет основу многих физиотерапевтических аппаратов. Существенной особенностью этих аппаратов является отдельный колебательный контур, к которому подключаются электроды, накладываемые на больного. Этот контур называют терапевтическим.

Терапевтический контур в целях безопасности больного индуктивно связан с контуром генератора, так как индуктивная связь исключает возможность случайного попадания больного под высокое постоянное напряжение, которое практически всегда имеется в генераторах колебаний.

В связи с тем, что в терапевтический контур включаются различные объекты, например различные части тела больного, и его электрические параметры могут соответственно изменяться, этот контур должен подстраиваться в резонанс при каждой процедуре. Для этого в нем имеется конденсатор переменной ёмкости.