- •А.К. Канаев б1.Б.44 линии связи» Конспект лекций
- •23.05.05 «Системы обеспечения движения поездов»
- •Основные термины и определения
- •Структура управления железнодорожным транспортом
- •Структура сети связи железнодорожного транспорта
- •Единая сеть электросвязи Российской Федерации
- •Сеть электросвязи связи оао «ржд»
- •Кабельные линии передачи
- •Вклад учёных кафедры «Электрическая связь» в теорию линий и практику строительства линий связи
- •Земля и земельные участки
- •Земельное законодательство и правовой режим земель
- •Государственная собственность на землю
- •Категории земель
- •Плата за использование земли
- •Земли железнодорожного транспорта
- •Порядок установления и использования полос отвода и охранных зон железных дорог
- •1. Кабельные линии и сети
- •2. Кабельные магистрали связи
- •4. Кабельные сети напольных устройств автоматики и телемеханики на станциях
- •5. Кабельные линии централизованной автоблокировки на перегонах
- •6. Принципы построении сетей отс
- •1. Электромагнитное поле и волны
- •4.Волновые уравнения в векторной форме
- •5. Плоские однородные волны как простейший случай волнового процесса
- •5. Распространение плоских волн в диэлектрике и проводнике
- •6. Волновые уравнения в цилиндрической системе координат
- •7. Электромагнитные волны в направляющих системах
- •8. Способы расчета направляющих систем
- •Лекция 6. Особенности электромагнитных процессов в направляющих системах
- •2. Внутреннее сопротивление уединенного круглого провода
- •3.Внутреннее сопротивление проводов двухпроводной цепи
- •Лекция 7. Характеристики передачи цепей автоматики и связи
- •1.Частотные характеристики
- •2.Временные характеристики.
- •3. Параметры цепей как характеристики процесса распространения электромагнитной энергии
- •Контрольные вопросы
- •Лекция 8. Первичные и волновые параметры кабельных цепей
- •1. Первичные параметры цепей симметричных кабелей
- •2. Первичные параметры коаксиальных кабелей
- •3. Волновые параметры цепей кабельных линий
- •Контрольные вопросы
- •1. Общие понятия
- •2. Классификация кабельных линий
- •3. Жилы кабелей
- •4. Материалы и виды изоляции
- •1.Скрутка жил в группу
- •2.Экраны, оболочки и защитные кабельные покровы
- •3.Кабельная арматура, материалы и сооружения
- •1. Маркировка кабелей связи, автоматики и телемеханики.
- •2. Особенности кабелей для прокладки в зоне электрифицированных железных дорог
- •3. Основные типы электрических кабелей связи и область их применения
- •3.1. Общие сведения
- •3.2. Кабели дальней связи
- •1. Кабели местных телефонных сетей.
- •2. Станционные кабели.
- •4. Коаксиальные кабели.
- •5. Кабели для сигнализации и блокировки.
- •6. Контрольные кабели.
- •7. Силовые кабели.
- •1. Классы и типы воздушных линий связи
- •2.Элементы воздушных линий связи
- •3. Арматура и устройство переходов
- •4. Основные сведения о высоковольтно-сигнальных линиях автоблокировки
- •1. Общие сведения
- •2. Определение токов непосредственного влияния, при нескрещенных цепях
- •3.Переходное затухание и защищенность
- •4. Изменение влияний при нескрещенных цепях в зависимости от длины линий и частоты тока
- •2.Влияния вследствие отражений
- •3.Влияние из-за конструктивных неоднородностей
- •4. Влияние между коаксиальными целями
- •5. Влияния между симметричными цепями при передаче импульсов
- •1. Скрещивание цепей воздушных линий
- •2. Переходное затухание между скрещенными цепями воздушных линий связи
- •3. Эффективность скрещивания в зависимости от шага скрещивания
- •4. Скрутка кабельных жил
- •1.Определение величины токов влияния на ближний и дальний концы кабельной линии
- •2. Симметрирование кабелей
- •1.Общие определения
- •2. Характеристики влияющих цепей
- •3. Особенности влияния на одно- и двухпроводные цепи
- •Лекция 19. Методика определения индуцированных напряжений и токов опасного и мешающего влияний
- •3. Особенности расчетов внешних и взаимных влияний
- •4. Коэффициенты связи
- •Лекция 20. Влияние внешних электромагнитных полей на цепи автоматики, телемеханики и связи
- •1. Классификация источников внешних влияний и их характеристики
- •2. Особенности расчета влияния на цепи автоматики, телемеханики и связи
- •3. Определение индуцированных напряжений и токов
- •1. Предельно допустимые значения опасных для человека токов
- •2. Допустимые значения мешающих влияний для телефонных каналов низкой частоты
- •3. Воздействие атмосферного электричества на линейные сооружения
- •1. Мероприятия, проводимые на влияющих линиях
- •2. Меры защиты от опасных и мешающих влияний, применяемые на линиях автоматики, телемеханики и связи
- •3. Особенности защиты линий от влияния радиостанций
- •4. Устройства защиты аппаратуры автоматики, телемеханики и связи от электромагнитных влияний.
- •1.Этапы проектирования
- •2. Выбор трассы и прокладка кабеля
- •1.Машины и механизмы для прокладки кабеля
- •2.Требования безопасности при строительстве и технической эксплуатации подземных кабелей
- •Техническая эксплуатация средств электросвязи принятая в Министерстве связи
- •1.1. Основные термины и определения
- •1.2. Основные задачи и организация технической эксплуатации линий связи
- •2. Техническое обслуживание и ремонт обьектов электросвязи оао «ржд»
- •2.1. Основные термины и определения
- •2.2. Техническое обслуживание электрических кабелей связи
- •12.4.2 Меры защиты от коррозии.
- •1.Требования охраны труда при техническом обслуживании и ремонте кабельных линий связи при работе в подземных кабельных сооружениях
- •2.Требования охраны труда при измерениях электрических параметров кабельных линий связи
- •3.Требования охраны труда при техническом обслуживании и ремонте кабельных линий связи.
- •4.Требования охраны труда при производстве работ по раскатке кабелей, проводов направляющих линий поездной радиосвязи.
- •5.Организация управления охраной труда в хозяйстве связи оао "ржд"
6. Принципы построении сетей отс
В книге [4] подробно рассмотрена организация сетей оперативно — технологической связи (ОТС) на железнодорожном транспорте. Отличительными особенностями магистральных, дорожных и отделенческих ОТС являются линейное расположение абонентских пунктов вдоль железных дорог при среднем расстоянии между ними 5 - 10км; значительная протяженность обслуживаемых участков; оперативно-служебный характер каждого вида связи, особое назначение и самостоятельная область применения; односторонний способ ведения переговоров; распределения нагрузки между пунктами, так как наибольшее количество переговоров абоненты линейных пунктов ведут с руководителями, находящимися в центрах управления на дорожных, отделенческих и участковых станциях, а число переговоров внутри участка между абонентами линейных пунктов сравнительно невелико. Эти особенности определили необходимость организации каждого вида ОТС по выделенному каналу. При организации связи наиболее дорогостоящими являются линейные сооружения. Так как ОТС применяется на всей сети железных дорог, то выбор наиболее рациональной и экономичной структуры сетей ОТС имеет существенное значение.
Сети с индивидуальными и групповыми каналами. Если при линейном расположении пунктов (рис. 5,а) организовать связь распорядительной станции (РС), где находится ответственный руководитель (диспетчер), с подчинённым ему персоналом на станциях вдоль участка железной дороги по индивидуальным каналам (двухпроводная цепь показана в однолинейном изображении), то общая протяжённость сети составит:
L1 = 0,5n(n-1)l (1)
где n — количество станций сети;
l — среднее расстояние между пунктами, км.
При такой структуре использование индивидуальных каналов низкое, так как нагрузка на такие каналы невелика. Например, в каналах ПС и ЛПС исходящая нагрузка от линейной станции к распорядительной не превышает, соответственно, 0,05 и 0,01 Эрл, а от одной линейной станции к другой в среднем составляет 0,001 Эрл (1 эрланг (1 Эрл) — соответствует непрерывному использованию одного стандартного канала тональной частоты в течение 1 часа. То есть если абонент проговорил с другим абонентом в течение одного часа, то на телекоммуникационном оборудовании была создана нагрузка в один Эрланг).
Рис.5
В каналах ПДС, СДС, ЭДС исходящая нагрузка от одной линейной станции к другой
составляет ещё меньшую величину.
Низкая нагрузка, необходимость заводить все виды связи практически на каждую линейную станцию, ведение индивидуальных, групповых и циркулярных (общих) разговоров, служебный характер переговоров привели к построению ОТС с использованием групповых каналов (5,б), в которые параллельно включаются аппараты абонентов линейных станций. В этом случае протяжённость сети составляет:
L2 = (n – 1)l (2)
Уменьшение протяжённости сети, а следовательно, и затрат на линейные сооружения согласно формулам (1 ) и (2) составит r = L1/L2 = n/2 (при 30 станциях в 15 раз). Таким образом, организация группового канала технологической связи значительно уменьшает затраты на реализацию конкретного вида ОТС.
Применение групповых каналов повышает использование линейных сооружений, так как каждым каналом пользуются абоненты п линейных станций, а не одна. Групповой принцип подключения к каналу абонентских установок на линейных станциях облегчает организацию связи совещаний. Таким образом, использование группового канала по сравнению с индивидуальными более эффективно. Следует отметить, что что при применении групп каналов отсутствует секретность связи, так как пользователи могут прослушивать разговоры других абонентов, включённых в этот же канал. Однако, в силу того, что по каналам ОТС ведутся служебные переговоры, этим недостатком пренебрегают. Для того, чтобы абоненты не мешали друг другу, телефонные аппараты подключаются к групповому каналу только в момент ведения переговоров. В свою очередь переговоры могут осуществляться только с разрешения и под контролем руководителя (диспетчера) или оператора, который устанавливает соединение.
Для раздельного вызова промежуточных пунктов, включённых в групповой канал, применяют кодированный вызывной сигнал. Для того, чтобы можно было вызвать каждого абонента индивидуально, промежуточный пункт линейной станции должен иметь приёмник избирательного вызова, срабатывающий при поступлении кодированного сигнала с индивидуальными отличительными признаками. Согласно технологии ведения переговоров по групповым каналам наряду с индивидуальным вызовом требуется посылать от распорядительной станции одновременно вызов группе промежуточных пунктов (групповой) или всем пунктам, включённым в канал (циркулярный).
Система телефонной связи, обеспечивающая посылку индивидуального, группового и циркулярного вызовов, называется избирательной.
В один групповой канал обычно требуется включать до 20-30 промежуточных пунктов. Если предположить, что их входное сопротивление Zвх мало, то затухание группового канала в целом увеличится, и качество передачи речи будет низким. Поэтому телефонные аппараты избирательной связи должны иметь высокое входное сопротивление, превышающее модуль волнового сопротивления цепи не менее, чем в 10 раз, во избежание шунтирования, при снятой трубке, одним аппаратом других. К особенностям связи по групповому каналу относится также односторонний (полудуплексный) способ ведения переговоров, который предусматривает включение переговорных устройств на распорядительных и промежуточных станциях по переменной схеме. Всё это потребовало разработки особых принципов построения сетей технологической связи и специального оборудования для различных видов ОТС.
Сети станционной ОТС строятся по радиальному принципу. У руководителей технологического процесса устанавливаются коммутаторы оперативной технологической связи (КТС), а у абонентов — телефонные аппараты с центральной батареей (рис.5,в), на котором двухпроводная цепь связи показана в однолинейном изображении.
Контрольные вопросы
Назначение и виды железнодорожных кабельных линий и сетей.
Из каких основных элементов состоит кабельная линия или сеть?
Какие отдельные сети автоматики и телемеханики организуются на станциях, оборудованных ЭЦ?
Какие цепи разных сетей ЭЦ можно объединять в одном кабеле и при каких условиях?
Каковы особенности кабельных линий на перегонах на автоблокировке с централизованным размещением аппаратуры?
Поясните понятия сети с индивидуальными и групповыми каналами.
Объясните, почему групповой канал более эффективен чем индивидуальный?
Раздел 3. |
Общие понятия о направляющих системах электросвязи |
ЛЕКЦИЯ 4. НАПРАВЛЯЮЩИЕ СИСТЕМЫ ЭЛЕКТРОСВЯЗИ
Для передачи информации электрическими сигналами (за исключением радиорелейной и спутниковой связи) применяют направляющие системы, канализующие электромагнитную энергию в заданном направлении. Направляющие системы представляют собой непрерывные, однородные устройства предназначенные для передачи электромагнитной энергии в заданном направлении.
Распространение поля в заданном направлении обеспечивается наличием границ между средами, имеющими различные свойства (проводник и диэлектрик, два диэлектрика с различными параметрами). Такими направляющими системами являются цепи воздушных и кабельных линий, металлические и диэлектрические волноводы и т.п. Направляющей системой является также любая линия передачи в энергетических системах.
При рассмотрении процесса передачи электромагнитной энергии по различным направляющим системам их принято разбивать на две основные группы. К первой группе относят направляющие системы, подчиняющиеся рассматриваемым в теории цепей уравнениям линии. Поэтому направляющие системы первой группы называют также цепями связи. К их числу принадлежат: симметричная цепь и различные её модификации, а также коаксиальная цепь. Ко второй группе относятся направляющие системы, рассчитываемые только электродинамическими методами. К числу таковых принадлежат различные виды металлических и диэлектрических волноводов.
На рис.1 показана первая группа направляющих систем, объединённых общим признаком: они состоят не менее чем из двух проводников, имеющих разные потенциалы и образующих цепь электрического тока. Проводники, образующие цепь, играют, в сущности, лишь роль направляющих поверхностей, которые определяют направление распространения волны в диэлектрике и ограничивают рассеяние электромагнитной энергии в окружающее пространство.
Симметричная цепь (СЦ)
Рис.1
Если провод однопроводной цепи и поверхность земли заменить металлическими лентами, то получится полосковая (несимметричная) линия (ПЛ). Для уменьшения внешних электромагнитных полей используют более сложные, так называемые симметричные полосковые линии (СПЛ), в которых обе внешние полосы составляют один провод. Если они в 2,5 – 3 раза шире внутренней, то электромагнитное поле будет сосредоточено в основном между лентами. Но симметричность здесь геометрическая, а не электрическая.
Перейдя от линии СПЛ к замкнутому вокруг внутреннего проводника внешнему проводнику, получим коаксиальную или концентрическую (КЦ) цепь, применяемую в коаксиальных кабелях. Внешний провод здесь играет и роль экрана. Внешнее электромагнитное поле такой цепи, в отличие от других цепей первой группы, практически отсутствует, поэтому она относится к «закрытым» системам. К первой группе направляющих систем относятся также трёхфазные цепи (ТЦ), воздушные и кабельные, используемые на линиях электропередачи и в сетях электроснабжения.
Иногда для экономии металла организуют искусственные (наложенные) цепи, в которых два провода симметричной цепи с помощью трансформатора со средней точкой используют в качестве одного провода (рис. 2,а). Таким образом, по четырём проводам организуют три независимые двухпроводные цепи. Аналогично на симметричную двухпроводную цепь накладывается «однопроводная» несимметричная (рис. 2,б).
Рис. 2
Ко второй группе относятся направляющие системы, содержащие всего один конструктивный направляющий элемент (рис. 3). Это металлические волноводы МВ, представляющие собой металлическую трубу круглого, прямоугольного или эллиптического сечения, в которой распространяется электромагнитная волна, а также диэлектрические волноводы ДВ, устроенные в виде стержней различных сечений из высокочастотного диэлектрика с диэлектрической проницаемостью ε >1, благодаря чему токи смещения в стержнях больше, чем в окружающем воздухе, и энергия распространяющейся вдоль него электромагнитной волны концентрируется и движется в основном в массе диэлектрика.
И
звестны
также магнитоэлектрические волноводы,
изготовляемые из диэлектрика, у которого
ε
>1 и магнитная проницаемость
μ > 1. Линия
поверхностей волны (ЛПВ) – это
металлический проводник, покрытый
слоем такого же диэлектрика, какой
используется
Рис.3
для изготовления диэлектрических и магнитодиэлектрических волноводов. Процесс распространения волны в ЛПВ аналогичен процессу в диэлектрическом волноводе, но здесь есть и токи проводимости. К этой же группе относятся различные световоды, в которых распространяются лучи света, т.е. электромагнитные процессы очень высокой частоты.
Первые световоды строились в виде металлической трубы, в которой луч света распространялся вдоль оси с помощью оптических или «газовых» линз или зеркал, расположенных внутри трубы. Такие световоды были дороги, требовали сложной юстировки и были заменены тонкими (доли миллиметра) прозрачными волокнами из специального стекла или пластмассы, обычно покрытыми отражающими оболочками из того же материала, но с несколько меньшим значением показателя преломления. Лучи распространяются вдоль световода в результате полных (без потери энергии) отражений от границы раздела сердцевины и отражающей оболочки.
Ч
астотные
диапазоны, в которых работают различные
направляющие системы, приведены на
рис. 4.
Рис. 4
Перечислим основные области применения направляющих систем. Симметричные двухпроводные цепи широко используются на воздушных линиях и кабельных линиях дальней связи, местной общетехнологической связи (абонентские и соединительные линии), станционной распорядительной и стрелочной связи, вторичной коммутации отделенческой оперативно-технологической связи, двухсторонней парковой связи громкоговорящего оповещения, абонентских участков информационно-вычислительных сетей передачи данных, а также в локальных вычислительных сетях. Однопроводные несимметричные цепи на железнодорожном транспорте практически не находят применения, так как очень чувствительны к индуктивным помехам и к токам, блуждающим в земле. Полосковые линии используют в радиотехнических и других СВЧ устройствах; особенно они удобны при монтаже на печатных платах. Коаксиальные цепи обладают сравнительно большей пропускной способностью и могут быть использованы для частичного резервирования волоконно-оптических линий передачи и в сетях кабельного телевидения. Металлические и диэлектрические волноводы применяются в радио- и других СВЧ приборах для соединения отдельных блоков и в качестве фидеров, соединяющих аппаратуру с антеннами.
Световоды предназначены для передачи больших объемов информации как на дальние расстояния, так и на короткие, например, в локальных вычислительных сетях.
В настоящее время наибольшее применение при изготовлении кабелей нашли симметричная цепь и оптическое волокно. Причём преимущественно применяются однородные кабели, содержащие или симметричные цепи или оптические волокна. На ряде железнодорожных участков проложены комбинированные кабели для технологической связи
и устройств СЦБ, содержащие как симметричные цепи так и оптические волокна. Последние предназначены для организации каналов технологической связи и линейных цепей автоблокировки на сети железных дорог Российской Федерации. Они содержат оптические волокна, высокочастотные и низкочастотные четверки (пары). По низкочастотным парам могут работать устройства СЦБ при номинальном напряжении 380 В переменного тока частотой 50 Гц и 700 В постоянного тока. Особенностью конструкций комбинированного кабеля является использование водо-блокирующих материалов в виде лент и корделя для обеспечения продольной водонепроницаемости кабеля. Поэтому этот кабель не требует постановки под избыточное воздушное давление при его эксплуатации.
Комбинированные кабели могут использоваться при строительстве и реконструкции устройств связи и СЦБ на малодеятельных участках дорог с воздушными линиями связи и сигнальными проводами, подвешенными на высоковольтных линиях автоблокировки.
Для участков с тепловозной тягой и электротягой постоянного тока разработаны модификации кабелей с экраном из алюмополиэтиленовой ленты типа МКПВБЭпП, а для участков с электротягой переменного тока с алюминиевой оболочкой типа МКПВБАШп. В маркировке комбинированных кабелей буквами Эп обозначен экран из алюмополиэтиленовой ленты, а буквами ВБ – обозначен водо-блокирующий материал.
Конструкция кабелей марки МКПВБЭпП - 2х4х1,05+9х2хО,7/ОКЗ 2х4-0,36/0,22 показана на рис.5.
Рис.5
1-контрольная жила; 2-лента из водо-блокирующего материала; 3-поясная изоляция; 4-экран из алюмополиэтиленовой ленты (или алюминиевая оболочка); 5-оболочка из полиэтилена; 6-алюмополиэтиленовая лента (алюминиевая оболочка); 7-контактная проволока; 8-модули-заполнители из полиэтилена; 9-.центральный силовой элемент из стеклопластика; 10-оптические модули; 11-трубка из полиэтилена; 12, 13, 16-кордели из водо-блокирующего материала; 14-изолированные жилы высокочастотных четверок; 15-высокочастотная четверка; 17-звездная четверка вспомогательных жил; 18-изолированная жила вспомогательных пар (четверок); 19-вспомогательная пара, скрученная из двух изолированных жил.
Оптический элемент сердечника кабеля представляет собой пучок, скрученных вокруг силового элемента, оптических модулей и корделей-заполнителей. Оптический элемент размещается в трубке из полиэтилена. Межмодульное пространство заполнено гидрофобным заполнителем, который не вытекает из сердечника оптического элемента до температуры 50°С.
Стандартная комплектация кабеля содержит два оптических модуля: один - красного цвета, другой - зеленого. Оптический модуль представляет собой трубку из полибутилентерефталата, внутри которого расположены четыре оптических волокна, имеющих оранжевый, белый, синий и зеленый цвет. Сочетание цветов оптических волокон одинаковое во всех модулях. Номинальный наружный диаметр оптического модуля ~ 2,0 мм.
Оптические волокна удовлетворяют требованиям рекомендации G.652 Международного союза электросвязи (МСЭ). Оптические волокна имеют следующие параметры:
коэффициент затухания - не более 0,36 дБ/км на длине волны 1310 им и не более 0,22 дБ/км на длине волны 1550 нм;
хроматическая дисперсия не более 3,5 пс/нм в диапазоне волн 1285-1330 нм и не более 18 пс/нм в диапазоне длин волн 1525-1375 нм.
В оптическом элементе, по требованию заказчика, может быть увеличено число оптических волокон с 8 до 20, за счет использования 3-х дополнительных оптических модулей, вместо корделей-заполнителей.
Высокочастотные четверки скручены из четырех изолированных жил с пленкопористой изоляцией разного цвета вокруг корделя-заполнителя из водо-блокирующего материала (ВБМ). Сердечник кабеля может содержать 1, 2 или 3 высокочастотные четверки. В четверке две жилы, расположенные по диагонали, образуют рабочую пару. Изоляция жил первой пары каждой четверки - красного и белого цветов, второй - синего и зеленого. Номинальный диаметр неизолированных токопроводящих жил - 1,05 мм, изолированных - 3,7 мм.
Низкочастотные четверки скручены из четырех изолированных жил, имеющих сплошную полиэтиленовую изоляцию.
В табл.1 приведены варианты комплектации сердечника комбинированного кабеля.
В четверке две жилы, расположенные по диагонали, образуют вспомогательную пару. Изоляция жил первой пары каждой четверки имеет красный и белый цвет. Второй – синий и зеленый.
Таблица 1.
Наименование и число элементов сердечника комбинированного кабеля |
||||
Оптических модулей |
ВЧ четверок |
НЧ четверок |
Одиночных НЧ пар |
Общее число НЧ пар |
2, 3, 4, 5 |
0 |
12 |
1 |
25 |
0 |
12 |
0 |
24 |
|
1 |
8 |
1 |
17 |
|
1 |
8 |
0 |
16 |
|
2 |
4 |
1 |
9 |
|
2 |
4 |
0 |
8 |
|
2 |
3 |
0 |
6 |
|
3 |
0 |
0 |
0 |
|
Одиночная пара скручена из двух изолирующих жил со сплошной полиэтиленовой изоляцией красного и белого цвета. Токопроводящие жилы низкочастотных пар имеют номинальный диаметр 0,7 мм, а изолированные жилы - 1,6 мм.
Сердечник кабелей скручивают из вышеуказанных элементов.
Кабели типа МКПВБЭпП и МКПВБЭпБбЩп имеют экран из алюмополиэтиленовой ленты с алюминиевым слоем номинально толщиной не менее 0,1 мм. Под экраном проложена луженая медная контактная проволока с минимальным диаметром 0,4 мм.
Кабели марок МКПВБАШп и МКПВБАБпШп имеют сварную алюминиевую оболочку толщиной не менее 1,1 мм.
При нарушении целостности наружных покровов и попадании влаги в сердечник кабеля ленты и кордели из водо-блокирующих материалов увеличиваются в объеме в 3~4 раза и образуют пробку, которая препятствует дальнейшему проникновению воды в кабель.
Для контроля целостности наружных покровов и отсутствия воды в сердечнике в конструкцию кабеля введена неизолированная жила. Целостность наружных покровов, а также расстояние до места их повреждения оценивают по величине сопротивления изоляции между контрольной жилой и экраном.
Для монтажа комбинированного кабеля разработана муфта для соединения и ответвления кабелей в месте стыка строительных длин и врезная муфта для ответвления в любом месте строительной длины кабеля.
Контрольные вопросы
1. Что такое направляющие системы?
2. Назовите разновидности направляющих систем, их рабочие диапазоны частот и области применения?
3.На какие группы делятся направляющие системы электросвязи?
4. Какие направляющие системы называются цепями связи?
5. Что заставляет электромагнитную волну двигаться вдоль направляющей системы?
6. Какие направляющие системы относятся к открытым?
7. Назовите направляющие системы, которые нашли наибольшее применение на железнодорожном транспорте?
Раздел 4 |
Основы электродинамики направляющих систем передачи |
ЛЕКЦИЯ 5. ОСНОВЫ ТЕХНИЧЕСКОЙ ЭЛЕКТРОДИНАМИКИ
