Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mechanical Properties of Ceramics and Composites

.pdf
Скачиваний:
346
Добавлен:
15.11.2014
Размер:
6 Mб
Скачать

590

Chapter 9

(as in directionally solidified eutectics) matrices that have no equivalence of grain structure themselves, λ defines the same basic physical dimension as G does in a dense monolithic ceramic, i.e. G defines the average separation of nearest neighbor nonadajecent grains, just as λ defines the average separation of particles or eutectic lamellae or rods. Thus the correlation of strength with λ in the latter cases is analogous to the correlation of strength with G in the large G region for monolithic ceramics, which lends support to its use in such cases. However, broader use in more complex structures such as those in crystallized glasses is uncertain, as is similar use of D, since both are related to each other, and both in turn to φ, with varying correlations with basic physical properties such as E, as was discussed earlier for results of Hing and McMillan [16].

Turning now to evaluation, the overall need is for broader consideration of possible contributing mechanisms, e.g. as was addressed above, and broader microstructural and especially property and behavior measurement, with much more attention to self-consistency. Thus, at the minimum, besides flexure strength and toughness measurements, Young’s modulus should be determined as a function of composite parameters, with preferably both the initial modulus being measured, e.g. by flexural resonance or ultrasonic techniques, as well as of possible changes in E as a function of loading to mechanical failure to detect stress-induced microcracking. Acoustic emission, internal friction, and damping can also be useful in this regard. Different toughness tests should be compared, especially on the basis of crack sizes to critical microstructural scales, e.g. grain and particle sizes as well as particle separations. Hardness testing, especially over a range of loads and with careful examination of indent cracking and compressive strength testing, again possibly accompanied by acoustic emission, can both indicate microcracking or debonding of second phase particles. Flexural strength testing for stressing parallel and then perpendicular to the machining direction can be a valuable tool for probing whether dispersed particles are constraining flaw sizes in the spacing between particles, since in such cases the anisotropy of strength with machining direction should disappear, e.g. as shown as a function of G in monolithic ceramics (Fig. 3.33). Testing with different strain rates, with biaxial loading, and with artificially introduced flaws can also be of use. Often of greater benefit is testing at higher and lower temperatures, for E as well as toughness and strength. Testing at lower temperatures reduces possible environmental effects on microcracking and crack growth and increases expansion mismatch stresses, while testing at higher temperatures reduces the latter stress and environmental effects. Other tests may also be valuable, e.g. electrical and thermal conductivities of the bulk or especially of the tensile surface may be good indicators of microcracking or debonding.

Testing of a broader range of composite microstructures and better characterization of them is also a critical need. Thus tests of a sufficient range of D values to determine the impact of this on strength and related properties is

Particle Dependence of Tensile Strength

591

important. Further, since there can be various correlations between microstructural parameters and properties without clear proof of causation, two steps are important. The first is evaluating properties against different microstructural parameters, i.e. G, D, λ, and φ to see if there are any unique correlations, and checking all correlations for self-consistency among various properties and possible mechanisms. The second, and especially important, but often neglected step is substantial fracture surface examination, especially, but not exclusively, seeking fracture origins. General examination typically gives a much more accurate picture of the microstructural extremes that may play a role in, or dominate, the composite behavior, and may indicate the relevance of some mechanisms, e.g. bridging is favored more by interrather than transgranular fracture. Crack interactions with dispersed particles may also be shown on fracture surfaces (especially but not exclusively) with glass or single crystal matrices (e.g. the latter in eutectic composites). However, identification of fracture origins, and especially quantitative analysis of them, e.g. of flaw sizes and implied fracture toughnesses, can be immensely valuable.

VI. SUMMARY AND CONCLUSIONS

While strengths often increase with the volume fraction second phase, in which case they typically go through a maximum, as toughness generally does, there are a number of cases where strength decreases, i.e. shows opposite dependence from typical toughness tests. Further, many composites show opposite strength dependence on key microstructural parameters such as particle size from that of toughness, which reinforce and more clearly show basic toughness and strength differences attributed to differences in crack size effects.

This review of composite strength behavior reinforces previous evidence for composite composition effects on machining flaw sizes. It was further shown that composites often exhibit the same two-branch strength–D-1/2 dependence as the strength–G-1/2 dependence for monolithic ceramics as a result of the same underlying impact of composition and microstructure on machining flaw sizes controlling strength. Thus there is a finer particle branch where strengths show variable but limited decreases in strength with increasing particle size due to the flaw sizes being > D, but being affected some by the impact on the particles on the local Young’s modulus, and especially hardness and toughness controlling flaw formation. On the other hand, there is a larger particle branch where the sizes of the particles (or clusters of them) are about that of the flaw size or greater so that the particle size becomes the flaw size, e.g. due to associated machining flaws, with resultant greater strength dependence on D.

The above flaw mechanisms, given attention because of their lack of recognition, are however only part of the picture, since there are commonly other mechanisms that are also operative to varying degrees, but which vary for

592

Chapter 9

different types of composites. Thus transforming toughening clearly commonly, but not necessarily always, plays an important role in zirconia toughened composites, as does ductile elongation of metal particles in ceramic–metal composites, while pullout is often indicated in whisker composites but is more uncertain. In particulate composites, crack deflection, bridging, and branching may play some role, but effects of stress-induced or spontaneous microcracking and effects on flaw sizes are important, often probably more so in such composites, and can also be factors in the above composites. Effects on flaw sizes may occur via dispersed particles constraining flaw sizes (mainly when there are limited particle–matrix mismatch stresses), or much more generally via effects on machining flaws from E, H, and K, or via residual surface compressive stresses. Another important factor is matrix grain size, which is found to be much more pervasive than originally generally thought and can impact all types of composites with polycrystalline matrices and is probably important in nanocomposites.

Finally, a number of recommendations have been made to improve documentation and understanding of the mechanical behavior of ceramic composites. These include a broader range of the type of tests, e.g. more strength, toughness, and Young’s modulus testing, complemented by other evaluations, e.g. for acoustic emission and internal friction or damping, as well as over a broader range of temperatures. Broader evaluation of microstructural parameters and evaluation of the consistency of various correlations is also recommended, since correlation does not necessarily mean causation, and microstructural parameters are interrelated. A key factor that needs much more use and correlation with both microstructural aspects of failure and evaluation of mechanisms is fractography, both of the general fracture surfaces and for fracture origin determination and evaluation.

REFERENCES

1.D. P. H. Hasselman and R. M. Fulrath. Proposed Fracture Theory of a DispersionStrengthened Glass Matrix. J. Am. Cer. Soc. 49(2):68–72, 1966.

2.R. W. Rice. The Effect of Grinding Direction on the Strength of Ceramics. The Science of Ceramic Machining and Surface Finishing (S. J. Schneider and R. W. Rice, eds.). NBS Special Pub. 348, US Govt. Printing Office, Washington, DC, 1972, pp. 365–376.

3.J. J. Mecholsky, Jr., S. W. Freiman, and R. W. Rice. Effect of Grinding on Flaw Geometry and Fracture of Glass. J. Am. Cer. Soc. 60(3–4):114–117, 1977.

4.D. B. Binns. Some Properties of Two-Phase Crystal-Glass Solids. Science of Ceramics 1 (G. H. Stewart, ed.). Academic Press, New York, 1962, pp. 315–334.

5.R. W. Davidge and T. J. Green. The Strength of Two-Phase Ceramic/Glass Materials. J. Mat. Sci. 3:629–634, 1968.

Particle Dependence of Tensile Strength

593

6.A. G. Evans. The Role of Inclusions in the Fracture of Ceramic Materials. J. Mat. Sci. 9:1145–1152, 1974.

7.W. J. Frye and J. D. Mackenzie. Mechanical Properties of Selected Glass-Crystal Composites. J. Mat. Sci. 2:124–130, 1967.

8.F. F. Lange. Fracture Energy and Strength Behavior of a Sodium Borosilicate Glass-Al2O3 Composite System. J. Am. Cer. Soc. 54(12):614–620, 1971.

9.N. Miyata, S. Ichikawa, H. Monji, and H. Jinno. Fracture Behavior of Brittle Matrix, Particulate Composites with Thermal Expansion Mismatch. Fracture Mechanics of Ceramics 7, Composites. Impact, Statistics, and High-Temperature Phenomena (R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, eds.). Plenum Press, New York, 1986, pp. 87–102.

10.W. D. Wolf, K. J. Vaidya, and L. F. Francis. Mechanical Properties and Failure Analysis of Alumina-Glass Dental Composites. J. Am. Cer. Soc. 79(7):1769–1776, 1996.

11.M. P. Borom. Dispersion-Strengthened Glass Matrices-Glass-Ceramics, A Case in Point. J. Am. Cer. Soc. 60(1–2):17–21, 1977.

12.N. Miyata and H. Jinno. Theoretical Approach to the Fracture of Two-Phase GlassCrystal Composites. J. Mat. Sci. 7:973–982, 1972.

13.S. W. Freiman and L. L. Hench. Effect of Crystallization on the Mechanical Properties of Li2O-SiO2 Glass-Ceramics. J. Am. Cer. Soc. 55(2):26–90, 1972.

14.D. I. H. Atkinson and P. W. McMillan. Glass-Ceramics with Random and Oriented Microstructures, Part 2. The Physical Properties of a Randomly Oriented GlassCeramic. J. Mat. Sci. 11:994–1002, 1978.

15.S. W. Freiman and R. W. Rice. Comment on “Glass-Ceramics with Random and Oriented Microstructures, Part 2. The Physical Properties of a Randomly Oriented Glass-Ceramic.” J. Mat. Sci. 13:1130–1134, 1978.

16.P. Hing and P. W. McMillan. The Strength and Fracture Properties of Glass-Ceramics. J. Mat. Sci. 8:1041–1048, 1973.

17.K. Hamano and E. S. Lee. Studies on the Mechanical Properties of Porcelain Bodies. Bull. Tokyo Inst. Tech. 108:95–111, 1972.

18.J. S. Banda and P. F. Messer. The Effect of Quartz Particles on the Strength and Toughness of Whitewares 17. Ceramic Transactions, Fractography of Glasses and Ceramics II (V. D. Fréchette and J. R. Varner, eds.). Am Cer. Soc., Westerville, OH, 1991, pp. 243–261.

19.R. W. Rice. Strength/Grain Size Effects in Ceramics. Proc. Brit. Cer. Soc. 6:119–136, 1966.

20.A. Dinsdale and W. T. Wilkinson. Strength of Whiteware Bodies. Proc. Brit. Cer. Soc. 20:205–257, 1972.

21.Y. Utsumi and S. Sakka. Strength of Glass-Ceramics Relative to Crystal Size. J. Am. Cer. Soc. 53(5):286–287, 1970.

22.A. J. Stryjak and P. W. McMillan. Microstructure and Properties of Transparent Glass-Ceramics. J. Mat. Sci. 13:1794–1804, 1978.

23.N. Claussen. Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase. Am. Cer. Soc. Bull. 59(1–2):49–54, 1976.

24.R. W. Rice. Processing of Ceramic Composites. Advanced Ceramic Processing

594

Chapter 9

and Technology 1 (J. G. P. Binner, ed.). Noyes, Park Ridge, NJ, 1990, pp. 123–213.

25.P. F. Becher. Transient Thermal Stress Behavior in ZrO2-Toughened Al2O3. J. Am. Cer. Soc. 64(1):37–39, 1978.

26.F. F. Lange. Transformation Toughening, Part 4. Fabrication, Fracture Toughness and Strength of Al2O3-ZrO2 Composites. J. Mat. Sci. 17:247–254, 1982.

27.F. F. Lange and M. M. Hirlinger. Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions. J. Am. Cer. Soc. 67(3):164–168, 1984.

28.S. Hori, R. Kurita, M. Yoshimura, and S. Somiya. Suppressed Grain Growth in

Final-Stage Sintering of Al2O3 with Dispersed ZrO2 Particles. J. Mat. Sci. Lett. 4:1067–1070, 1985.

29.S. Hori, R. Kurita, M. Yoshimura, and S. Somiya. Influence of Small ZrO2 Additions on the Microstructure and Mechanical Properties of Al2O3. Science and Technology of Zirconia III. Adv. in Ceramics 24 (S. Sõmiya, N. Yamamoto, and H. Hanagida, eds.). Am. Cer. Soc., Westerville, OH, 1988, pp. 423–429.

30.A. Nisida, S. Fukuda, Y. Kohtoku, and K. Terai. Grain Size Effect on Mechanical

Strength of MgO-ZrO2 Composite Ceramics. J. Jpn. Cer. Soc., Intl. Ed. 100:203–207, 1992.

31.R. W. Rice. Fractographic Determination of KIC and Effects of Microstructural Stresses in Ceramics. Fractography of Glasses and Ceramics, Ceramic Trans. 17 (J. R. Varner and V. D. Frechette, eds.). Am. Cer. Soc., Westerville, OH, 1991, pp. 509–545.

32.R. W. Rice. Toughening in Ceramic Particulate and Whisker Composites. Cer. Eng. Sci. Proc. 11(7–8):667–694, 1990.

33.E. H. Lutz, M. V. Swain, and N. Claussen. Thermal Shock Behavior of Duplex Ceramics. J. Am. Cer. Soc. 74(1):19–24, 1991.

34.J. Wang and R. Stevens. Toughening Mechanisms in Duplex Alumina-Zirconia Ceramics. J. Mat. Sci. 23:804–808, 1988.

35.R. Langlois and K. J. Konsztowicz. Toughening in Zirconia-Toughened Alumina Composites with Non-Transforming Zirconia. J. Mat. Sci. Lett. 11:1454–1456, 1992.

36.K. Tsukuma, K. Ueda, and M. Shimada. Strength and Fracture Toughness of Iso-

tactically Hot-Pressed Composites of Al2O3 and Y2O3-Partially-Stabilized ZrO2. J. Am. Cer. Soc. 68(1):C–4–5, 1985.

37.S. Hori, M. Yoshimura, and S. Sõmiya. Strength-Toughness Relations in Sintered

and Isotactically Hot-Pressed ZrO2-Toughened Al2O3. J. Am. Cer. Soc. 69(30):169–172, 1986.

38.H. Tomaszewski. Effect of Sintering Atmosphere on Thermomechanical Properties of Al2O3-ZrO2 Ceramics. Cer. Intl. 15:141–146, 1989.

39.A. K. Kurakose and L. J. Beaudin. Tetragonal Zirconia in Chill-Cast AluminaZirconia. J. Canadian Cer. Soc. 46:45–50, 1977.

40.R. Ruh and H. J. Garrett. Nonstoichiometry of ZrO2 and Its Relation to TetragonalCubic Inversion in ZrO2. J. Am. Cer. Soc. 50(5):257–261, 1967.

41.R. J. Ackermann, S. P. Garg, and E. G. Rauh. The Lower Phase Boundary of ZrO2-x. J. Am. Cer. Soc. 61(5–6):275–276, 1978.

42.R. W. Rice, B. A. Bender, R. P. Ingel, T. W. Coyle, and J. R. Spann. Tougher Ce-

Particle Dependence of Tensile Strength

595

ramics Using Tetragonal ZrO2 of HfO2. Ultrastructure Processing of Ceramics, Glasses, and Composites (L. L. Hench and D. R. Ulrich, eds.). Wiley-Interscience, New York, 1984, pp. 507–523.

43.U. Krohn, H. Olapinski, and U. Dworak. US patent 4,595,663, 6/17/1986.

44.J. Homeny and J. J. Nick. Microstructure-Property Relations of Alumina-Zirconia Eutectic Ceramics. Mat. Sci. Eng. A127:123–133, 1990.

45.Q.-M. Yuan, J.-Q. Tan, and Z.-G. Jin. Preparation and Properties of ZirconiaToughened Mullite Ceramics. J. Am. Cer. Soc. 69(3):265–267, 1986.

46.S. Lathabai, D. G. Hay, F. Wagner, and N. Claussen. Reaction-Bonded Mullite/ Zirconia Composites. J. Am. Cer. Soc. 79(1):248–256, 1996.

47.M. Ishitsuka, T. Sato, T. Endo, and M. Shimada. Sintering and Mechanical Proper-

ties of Yttria-Doped Tetragonal ZrO2 Polycrystal/Mullite Composites. J. Am. Cer. Soc. 70(11):C–342–346, 1987.

48.T. Ono, K. Nagata, M. Hashiba, E. Miura, and Y. Nurishi. Internal Friction, Crack Length of Fracture Origin and Fracture Surface Energy in Alumina-Zirconia Composites. J. Mat. Sci. 24:1974–1978, 1989.

49.K. J. Konsztowicz and R. Langlois. On the Variability of Strength to Toughness Ratio in Zirconia-Alumina Composites. J. Mat. Sci. Lett. 15:1093–1096, 1996.

50.R. W. Rice. Microstructural Dependence of Fracture Energy and Toughness of Ceramics and Ceramic Composites Versus That of Their Tensile Strengths at 22°C. J. Mat. Sci. 31:4503–4519, 1996.

51.T. Tiegs and K. J. Bowman. Fabrication of Particulate-, Platelet-, and Whisker-Re- inforced Ceramic Matrix Composites. Handbook on Discontinuously Reinforced Ceramic Matrix Composites (K. J. Bowman, S. K. El-Rahaiby, and J. B. Wachtman, Jr., eds.). Am. Cer. Soc., Westerville, OH, 1995, Ch. 4, pp. 91–138.

52.M. Yasuoka, M. E. Brito, K. Hirao, and S. Kanzaki. Effect of Dispersed Particle Size on Mechanical Properties of Alumina/Non-Oxide Composites. J. Cer. Soc. Jpn., Intl. Ed. 101:865–870, 1993.

53.I. Thompson and V. D. Kristic. Mechanical Properties of Hot-Pressed SiC Particu- late-Reinforced Al2O3 Matrix. J. Mat. Sci. 27:5765–5768, 1992.

54.A. Nakahira, K. Niihara, and T. Hirai. Microstructural Properties of Al2O3-SiC Composites. Yogyo-Kyokai-Shi 94(8):767–772, 1986.

55.I.-S. Kim and I.-G. Kim. Thermal Shock Behavior of Al2O3-SiC Composites Made by Directed Melt Oxidation of Al-Alloy. J. Mat. Sci. Lett. 16:772–775, 1997.

56.K. Niihara. New Design Concept of Structural Ceramics—Ceramic Nanocomposites. J. Cer. Soc. Jpn. 99:974–982, 1991.

57.D. Zhang, H. Yang, R. Yu, and W. Weng. Mechanical Properties of Al2O3-SiC Composites Containing Various Sizes and Fractions of Fine Particles. J. Mat. Sci. 16:877–879, 1997.

58.J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chen, and G. A. Miller. Mechanical Behavior of Alumina-Silicon Carbide “Nanocomposites.” J. Am. Cer. Soc. 76(2):503–510, 1993.

59.M. Sternitzke, B. Derby, and R. J. Brook. Alumina-Silicon Carbide Nanocomposites by Hybrid Polymer/Powder Processing: Microstructures and Mechanical Properties. J. Am. Cer. Soc. 81(1):41–48, 1998.

596

Chapter 9

60.I. A. Chou, H. M. Chen, and M. P. Harmer. Machining-Induced Surface Residual

Stress Behavior in Al2O3-SiC Nanocomposites. J. Am. Cer. Soc. 79(9):2403–2409, 1996.

61.A. M. Thompson, H. M. Chen, and M. P. Harmer. Crack Healing and Stress Relaxation in Al2O3-SiC “Nanocomposites.” J. Am. Cer. Soc. 78(3):567–571, 1995.

62.R. P. Wahi and B. Ilschner. Fracture Behavior of Composites Based on Al2O3-TiC.

J.Mat. Sci. 15:875–885, 1980.

63.H. J. Hwang and K. Niihara. Perovskite-Type BaTiO3 Ceramics Containing Particulate SiC. J. Mat. Sci. 33:549–558, 1998.

64.P. C. Strange and A. H. Bryant. The Role of Aggregate in the Fracture of Concrete.

J.Mat. Sci. 14:1863–1868, 1979.

65.F. F. Lange. Effect of Microstructure on Strength of Si3N4-SiC Composite System.

J.Am. Cer. Soc. 55(9):445–450, 1973.

66.H. Tanaka, P. Greil, and G. Petzow. Sintering and Strength of Silicon NitrideSilicon Carbide Composite. Intl. J. High Temp. Cer. 1:107–118, 1985.

67.H. Nakamura, S. Umebayashi, and K. Kishi. Mechanical Properties of Hot Pressed Si3N4-SiC Composites. J. Cer. Soc. Jpn., Intl. Ed. 97:1526–1529, 1989.

68.Y. Akimune, T. Ogasawara, and N. Hirosaki. Influence of Starting Powder Charac-

teristics on Mechanical Properties of SiC-Particle/Si3N4 Composites. J. Cer. Soc. Jpn., Intl. Ed. 100:468–472, 1992.

69.G. Pezzotti and T. Nishida. Effect of Size and Morphology of Particulate SiC Dis-

persions on Fracture Behavior of Si3N4 Without Sintering Aids. J. Mat. Sci. 29:1765–1772, 1994.

70.A. Sawaguchi, K. Toda, and K. Niihara. Mechanical and Electrical Properties of Silicon Nitride–Silicon Carbide Nanocomposite Material. J. Am. Cer. Soc. 74(5):1142–1144, 1991.

71.G. Sasaki, H. Nakase, K. Suganuma, T. Fujita, and K. Niihara. Mechanical Proper-

ties and Microstructure of Si3N4 Matrix Composite with Nanometer Scale SiC Particles. J. Cer. Soc. Jpn., Intl. Ed. 100:536-540, 1992.

72.L. Tian, Y. Zhou, and W.-L. Zhou. SiC-Nanoparticle-Reinforced Si3N4 Matrix Composites. J. Mat. Sci. 33:797–802, 1998.

73.J. J. Petrovic, M. I. Pena, I. E. Remanis, M. S. Sandlin, S. D. Conzone, H. H.

Kung, and D. P. Butt. Mechanical Behavior of MoSi2 Reinforced-Si3N4 Matrix Composites. J. Mat. Sci. 80(12):3070–3076, 1997.

74.T. Mah, M. G. Mendiratta, and H. A. Lipsitt. Fracture Toughness and Strength of Si3N4-TiC Composites. Am. Cer. Soc. Bull. 60(11):1229–1240, 1981.

75.J. D. Yoon and S. G. Kang. Strengthening and Toughening Behavior of SiC with Additions of TiB2. J. Mat. Sci. Lett. 14:1065–1067, 1995.

76.K.-S. Cho, Y.-W. Kim, H.-J. Choi, and J.-G. Lee. SiC-TiC and SiC-TiB2 Composites Densified by Liquid-Phase Sintering. J. Mat. Sci. 31:6223–6228, 1996.

77.C. H. McMurtry, W. D. G. Boecker, S. G. Seshadri, J. S. Zangil, and J. E. Garnier.

Microstructure and Material Properties of SiC-TiB2 Particulate Composites. Am. Cer. Soc. Bull. 66(2):325–329, 1987.

78.D. J. Magley, R. A. Winholz, and K. T. Faber. Residual Stresses in a Two-Phase Microcracking Ceramic. J. Am. Cer. Soc. 73(6):1641–1644, 1990.

Particle Dependence of Tensile Strength

597

79.H. Endo, M. Ueki, and H. Kubo. Microstructure and Mechanical Properties of Hot Pressed SiC-TiC Composites. J. Mat. Sci. 26:3769–3774, 1991.

80.B.-W. Lin and T. Iseki. Effect of Thermal Residual Stress on Mechanical Properties of SiC/TiC Composites. Brit. Cer. Trans. 91:1–5, 1992.

81.J.-F. Li and R. Watanabe. Preparation and Mechanical Properties of SiC-AlN Ceramic Alloys. J. Mat. Sci. 26:4813–4817, 1991.

82.Y. K. Baek and C. H. Kim. The Effect of Whisker Length on the Mechanical Properties of Alumina-SiC Whisker Composites. J. Mat. Sci. 24:1589–1593, 1989.

83.E. Yasuda, T. Akatsu, and Y. Tanabe. Influence of Whiskers’ Shape and Size on

Mechanical Properties of SiC Whisker-Reinforced Al2O3. J. Cer. Soc. Jpn., Intl. Ed. 99:51–57, 198 .

84.A. V. Krylov, S. M. Barinov, D. A. Ivanov, N. A. Mindlina, L. Parilak, J. Dusza, F. Lofaj, and E. Rudnayova. Influence of SiC Whisker Size on Mechanical Properties of Reinforced Alumina. J. Mat. Sci. Lett. 12:904–906, 1993.

85.T. Tiegs. Structural and Physical Properties of Ceramic Matrix Composites. Handbook on Discontinuously Reinforced Ceramic Matrix Composites (K. J. Bowman, S. K. El-Rahaiby, and J. B. Wachtman, Jr., eds.). Am. Cer. Soc., Westerville, OH, 1995, Ch. 6, pp. 226–273.

86.T. E. Steyer and K. T. Faber. Fracture Behavior of SiC Whisker-Reinforced Al2O3 with Modified Surfaces. Cer. Eng. Sci. Proc. 13(9–10):669–677, 1992.

87.M. Yang and R. Stevens. Microstructure and Properties of SiC Whisker Reinforced Ceramic Composites. J. Mat. Sci. 26:726–736, 1991.

88.N. Sato and T. Kurauchi. Microcracking During a Thermal Cycle in Whisker-Re- inforced Ceramic Composites Detected by Acoustic Emission Measurements. J. Mat. Sci. Lett. 11:590–591, 1992.

89.K. Ikeda and T. Kishi. Matrix Grain Size Effect and Fracture Behavior on Bending

Strength and Fracture Toughness in Multi-Toughened Al2O3. Cer. Eng. Sci. Proc. 13(7–8):164–171, 1992.

90.P. F. Becher, C.-H. Hsueh, P. Angelini, and T. N. Tiegs. Toughening Behavior in Whisker Reinforced Ceramic Matrix Composites. J. Am. Cer. Soc. 71(12):1050–1061, 1988.

91.T. N. Tiegs and P. F. Becher. Alumina-SiC Whisker Composites. Cer. Eng. Sci. Proc. 7(9–10):1182–1186, 1986.

92.I. Wadsworth and R. Stevens. The Influence of Whisker Dimensions on the Mechanical Properties of Cordierite/SiC Composites. J. Eur. Cer. Soc. 9:153–163, 1992.

93.Z. Zhang, Y. Huang, L. Zheng, and Z. Jiang. Preparation and Mechanical Properties of SiC Whisker and Nanosized Mullite Particulate Reinforced TZP Composites. J. Am. Cer. Soc. 79(10):2779–2782, 1996.

94.L. J. Neergard and J. Homeny. Mechanical Properties of Beta-Silicon Nitride Whisker/Silicon Nitride Matrix Composite. Cer. Eng. Sci. Proc. 10(9–10): 1049–1062, 1989.

95.C. Olagnon, E. Bullock, and G. Fantozzi. Properties of Sintered SiC WhiskerReinforced Si3N4 Composites. J. Eur. Cer. Soc. 7:265–273, 1991.

598

Chapter 9

96.F. Rossignol, P. Goursat, J. L. Besson, and P. Lespade. Microstructure and Me-

chanical Behavior of Self-Reinforced Si3N4 and Si3N4 -SiC Whisker Composites. J. Eur. Cer. Soc. 13:299–312, 1994.

97.T. Fusakawa and Y. Goto. Mechanical Properties of Si3N4 Ceramic Reinforced with SiC Whiskers and Platelets. J. Mat. Sci. 33:1647–1651, 1998.

98.A. Kamiya, K. Nakano, and H. Okuda. Fabrication and Properties of SiC Whisker Reinforced NbC Composites. J. Jpn. Cer. Soc., Intl. Ed. 97:934–940, 1989.

99.N. Tamari, H. Kobayashi, T. Tanaka, I. Kondoh, and S. Kose. Mechanical Proper-

ties of B4C-SiC Whisker Composite Ceramics. J. Jpn. Cer. Soc., Intl. Ed. 98:1169–1173, 1990.

100.A. Kamiya and K. Nakano. Mechanical Properties of SiC Whisker-Reinforced

TiB2 Composites Fabricated by Hot-Pressing. J. Jpn. Cer. Soc., Intl. Ed. 101:598–601, 1992.

101.A. Kamiya, K. Nakano, and A. Kondoh. Fabrication and Properties of Hot-Pressed

SiC Whisker-Reinforced TiB2 and TiC Composites. J. Mat. Sci. Lett. 8:566–568, 1989.

102.A. Kamiya, K. Nakano, and H. Okuda. Fabrication and Properties of TiC/SiC Whisker Composites. J. Jpn. Cer. Soc., Intl. Ed. 98:1156–1162, 1990.

103.J. Dusza, D. Sajgalik, and M. Reece. Analysis of Si3N4 + β-Si3N4 Whisker Ceramics. J. Mat. Sci. 26:6782–6788, 1991.

104.J. Dusza and D. Sajgalik. Mechanical Properties of Si3N4 + β-Si3N4 Whisker Reinforced Ceramics. J. Eur. Cer. Soc. 9:9–17, 1992.

105.Y.-S. Chou and D. J. Green. Silicon Carbide Platelet/Alumina Composites: II, Mechanical properties. J. Am. Cer. Soc. 76(6):1452–1458, 1995.

106.T. Mitchel, Jr., L. C. DeJonghe, W. J. MoberlyChan, and R. O. Ritchie. Silicon Carbide Platelet/Silicon Carbide Composites. J. Am. Cer. Soc. 78(1):97–103, 1995.

107.C. Naschik, M. M. Seibold, N. A. Travitzky, and N. Claussen. Effect of Processing on Mechanical Properties of Platelet-Reinforced Mullite Composites. J. Am. Cer. Soc. 74(10):2464–2468, 1991.

108.P.-L. Chen and I-W. Chen. In-Situ Alumina/Aluminate Platelet Composites. J. Am. Cer. Soc. 75(9):2610–2612, 1992.

109.M. Yasuoka, K. Hirao, M. E. Brito, and S. Kanzaki. High-Strength and High-

Fracture-Toughness Ceramics in the Al2O3/LaAl11O5 Systems. J. Am. Cer. Soc. 78(7):1853–1856, 1995.

110.H.-D. Kim, I.-S. Lee, S.-W. Kang, and J.-W. Ko. The Formation of NaMg2Al15O25 in an α-Al2O3 Matrix and Its Effect on the Mechanical Properties of Alumina. J. Mat. Sci. 29:4119–4124, 1994.

111.T. Koyama, A. Nishiyama, and K. Niihara. Effect of Grain Morphology and Grain

Size on the Mechanical Properties of Al2O3 Ceramics. J. Mat. Sci. 29:3949–3954, 1994.

112.L. An and H. M. Chan. R-Curve Behavior of In-Situ Toughened Al2O3:CaAl12O19 Ceramic Composites. J. Am. Cer. Soc. 79(12):3142–3148, 1996.

113.D. Baril, S. P. Tremblay, and M. Fiset. Silicon Carbide Platelet Reinforced Silicon Nitride Composites. J. Mat. Sci. 28:5486–5494, 1993.

Particle Dependence of Tensile Strength

599

114.B. J. Kellett and D. S. Wilkinson. Processing and Properties of Alumina-Graphite Platelet Composites. J. Am. Cer. Soc. 78(5):1198–1200, 1995.

115.O. S. Ozgen and B. Bond. Effect of Graphite on Mechanical Properties of Alumina/Graphite Materials with Ceramic Bonds. Brit. Cer. Trans. J. 84, 138–142, 1985.

116.R. Chaim and V. Talanker. Microstructure and Mechanical Properties of SiC Platlet/Cordierite Glass-Ceramic Composites. J. Am. Cer. Soc. 78(1):166–172, 1995.

117.C. Hulse and J. Batt. The Effect of Eutectic Microstructures on the Mechanical Properties of Ceramic Oxides. United Aircraft Res. Lab. Report for ONR Contract N00014-69-C-0073, 5/1974.

118.T. Mah, A. Parthasarathy, and L. E. Matson. Processing and Mechanical Properties

of Al2O3/Y5Al5O12 (YAG) Eutectic Composites. Cer. Eng. Sci. Proc. 11(9–10): 1617–1627, 1990.

119.F. L. Kennard, R. C. Bradt, and V. S. Stubican. Mechanical Properties of the Direc-

tionally Solidified MgO-MgAl2O4 Eutectic. J. Am. Cer. Soc. 59(3–4):160–163, 1976.

120.V. S. Stubican, R. C. Bradt, F. L. Kennard, W. J. Minford, and C. C. Sorell. Ceramic Eutectic Composites. Tailoring Multiphase and Composite Ceramics, Materials Science Research 20 (R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham, eds.). Plenum Press, New York, 1986, pp. 103–113.

121.C. C. Sorell, V. S. Stubican, and R. C. Bradt. Mechanical Properties of ZrC-ZrB2 and ZrC-TiB2 Directionally Solidified Eutectics. J. Am. Cer. Soc. 69(4):317–321, 1986.

122.Y. Nivas and R. M. Fulrath. Limitations of Griffith Flaws in Glass–Matrix Composites. J. Am. Cer. Soc. 53(4):188–191, 1970.

123.D. R. Biswas. Strength and Fracture Toughness of Indented Glass-Nickel Compacts. J. Mat. Sci. 15:1696–1700, 1980.

124.Y.-H. Yun and S.-C. Choi. The Contributions of Microstructural Characteristics and Residual Stress Distribution to Mechanical Properties of AlN/W Composite System. J. Mat. Sci. 33:707–712, 1998.

125.T. Sekino, T. Nakajima, S. Ueda, and K. Niihara. Reduction and Sintering of a Nickel-Dispersed-Alumina Composite and Its Properties. J. Am. Cer. Soc. 80(5):1139–1148, 1997.

126.M. Nawa, T. Sekino, and K. Niihara. Fabrication and Mechanical Behavior of

Al2O3/Mo Nanocomposites Processing and Novel Interpenetrated Intragranular Microstructure. J. Mat. Sci. 29:3185–3192, 1994.

127.A. J. Pyzik and D. R. Beaman. Al-B-C Phase Development and Effects on Me-

chanical Properties of B4C/Al-Derived Composites. J. Am. Cer. Soc. 78(20):305–312, 1995.

128.I. W. Donald and P. W. McMillan. The Influence of Internal Stresses on the Mechanical Behavior of Glass–Ceramic Composites. J. Mat. Sci. 12:290–298, 1977.

129.J. G. Zwissler, M. E. Fine, and G. W. Groves. Strength and Toughness of a Ceramic Reinforced with Metal Wires. J. Am. Cer. Soc. 60(9–10):390–396, 1977.

130.L. A. Simpson and A. Wasylyshyn. Fracture Energy of Al2O3 Containing Mo Wire. J. Am. Cer. Soc. 54(1):56, 1971.