Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Mechanical Properties of Ceramics and Composites

.pdf
Скачиваний:
340
Добавлен:
15.11.2014
Размер:
6 Mб
Скачать

530

Chapter 8

144.S. V. Nair, P. Z. Q. Cai, and J. E. Ritter. Mechanical Behavior of Silicon Carbide Particulate Reinforced Reaction Bonded Silicon Nitride Matrix Composites. Cer. Eng. Sci. Proc. 13(7–8):81–89, 1992.

145.J. J. Petrovic, M. I. Pena, I. E. Remanis, M. S. Sandlin, S. D. Conzone, H. H.

Kung, and D. P. Butt. Mechanical Behavior of MoSi2 Reinforced-Si3N4 Matrix Composites. J. Mat. Sci. 80(12):3070–3076, 1997.

146.L. S. Sigl and H.-J. Kleebe. Microcracking in B4C-TiB2 Composites. J. Am. Cer. Soc. 78(9):2374–2380, 1995.

147.M. Landon and F. Thevenot. The SiC-AlN System: Influence of Elaboration Routes on the Solid Solution Formation and Its Mechanical Properties. Cer. Intl. 17:97–110, 1991.

148.J.-F. Li and R. Watanabe. Preparation and Mechanical Properties of SiC-AlN Ceramic Alloys. J. Mat. Sci. 26:4813–4817, 1991.

149.K.-H. Heussner and N. Claussen. Yttriaand Ceria-Stabilized Tetragonal Zirconia

Polycrystals (Y-TZP, Ce-TZP) Reinforced with Al2O3 Platelets. J. Eur. Cer. Soc. 5:193–200, 1989.

150.X.-N. Huang and P. S. Nicholson. Mechanical Properties and Fracture Toughness

of αAl2O3-Platelet Reinforced Y-TZP Composites at Room and High Temperature. J. Am. Cer. Soc. 76(5):1294–1301, 1993.

151.M. Yasuoka, K. Hirao, M. E. Brito, and S. Kanzaki. High-Strength and High-

Fracture-Toughness Ceramics in the Al2O3/LaAl11O5 Systems. J. Am. Cer. Soc. 78(7):1853–1856, 1995.

152.H.-D. Kim, I.-S. Lee, S.-W. Kang, and J.-W. Ko. The Formation of NaMg2Al15O25 in an αAl2O3 Matrix and Its Effect on the Mechanical Properties of Alumina. J. Mat. Sci. 29:4119–4124, 1994.

153.T. Koyama, A. Nishiyama, and K. Niihara. Effect of Grain Morphology and Grain

Size on the Mechanical Properties of Al2O3 Ceramics. J. Mat. Sci. 29:3949–3954, 1994.

154.L. An and H. M. Chan. R-Curve Behavior of In-Situ Toughened Al2O3:CaAl12O19 Ceramic Composites. J. Am. Cer. Soc. 79(12):3142–3148, 1996.

155.C. Nischik, M. M. Seibold, N. A. Travitzky, and N. Claussen. Effect of Processing on Mechanical Properties of Platelet-Reinforced Mullite Composites. J. Am. Cer. Soc. 74(10):2464–2468, 1991.

156.Y.-S. Chou and D. J. Green. Silicon Carbide Platelet/Alumina Composites: II, Mechanical Properties. J. Am. Cer. Soc. 76(6):1452–1458, 1993.

157.R. Chaim and V. Talanker. Microstructure and Mechanical Properties of SiC Platelet/Cordierite Glass-Ceramic Composites. J. Am. Cer. Soc. 78(1):166–172, 1995.

158.C. F. Cooper, I. C. Alexander, and C. J. Hampson. The Role of Graphite in the Thermal Shock Resistance of Refractories. Brit. Cer. Trans. J. 84:57–62, 1985.

159.T. Mitchel, Jr., L. C. DeJonghe, W. J. MoberlyChan, and R. O. Ritchie. Silicon Carbide Platelet/Silicon Carbide Composites. J. Am. Cer. Soc. 78(1):97–103, 1995.

160.M. Hanninen, R. A. Haber, and D. E. Niesz. Mechanical Properties of Silicon Carbide Platelet and Particulate Reinforced Silicon Nitride. Ceramic Transactions 19,

Particle (and Grain) Effects

531

Advanced Composite Materials (M. D. Sacks, ed.). Am. Cer. Soc., Westerville, OH, 1991, pp. 749–755.

161.T. D. Claar, W. B. Johnson, C. A. Anderson, and G. H. Schiroky. Microstructure and Properties of Platelet-Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide. Cer. Eng. Sci. Proc. 10(7-8):599–609, 1989.

162.T. N. Tiegs and P. F. Becher. Alumina-SiC Whisker Composites. Cer. Eng. Sci. Proc. 7(9–10):1182–1186, 1986.

163.P. F. Becher, T. N. Tiegs, and P. Angelini. Whisker Toughened Ceramic Composites. Fiber Reinforced Ceramic Composites, Materials, Processing and Technology (K. S. Mazdiyasni, ed.). Noyes, Park Ridge, NJ, 1990, pp. 311–327.

164.P. F. Becher, C.-H. Hsueh, P. Angelini, and T. N. Tiegs. Toughening Behavior in Whisker Reinforced Ceramic Matrix Composites. J. Am. Cer. Soc. 71(12): 1050–1061, 1988.

165.P. F. Becher, H.T. Lin, and K. B. Alexander. Development of Toughened Ceramics for Elevated Temperatures. Science of Engineering Ceramics ’91 (S. Kimura and

K.Niihara, eds.). Cer. Soc. Jpn. 99:307–314, 1991.

166.P. F. Becher, E. R. Fuller, Jr., and P. Angelini. Matrix-Grain-Bridging Contributions to the Toughness of Whisker-Reinforced Ceramics. J. Am. Cer. Soc. 74(9): 2131–2135, 1991.

167.E. Yasuda, T. Akatsu, and Y. Tanabe. Influence of Whiskers’ Shape and Size on

Mechanical Properties of SiC Whisker-Reinforced Al2O3. J. Cer. Soc. Jpn., Intl. Ed. 99:51–57, 1991.

168.A. V. Krylov, S. M. Barinov, D. A. Ivanov, N. A. Mindlina, L. Parilak. J. Dusza, F. Lofaj, and E. Rudnayova. Influence of SiC Whisker Size on Mechanical Properties of Reinforced Alumina. J. Mat. Sci. Lett. 12:904–906, 1993.

169.Y. K. Baek and C. H. Kim. The Effect of Whisker Length on the Mechanical Properties of Alumina-SiC Whisker Composites. J. Mat. Sci. 24:1589–1593, 1989.

170.T. Tiegs. Structural and Physical Properties of Ceramic Matrix Composites. Handbook on Discontinuously Reinforced Ceramic Matrix Composites (R. L. Lehman,

S.K. El-Rahaiby, and J. B. Wachtman, Jr., eds.). Ceramics Information Analysis Center, West Lafayette, IN and Am. Cer. Soc., Westerville OH, 1995, pp. 225–273.

171.K. P. Gadkaree. Whisker Reinforcement of Glass-Ceramics. J. Mat. Sci. 26:4845–4854, 1991.

172.M. Wu, G. L. Messing, and M. F. Amateau. Laminate Processing and Properties of Oriented SiC-Whisker-Reinforced Composites. Ceramic Trans. 19, Advanced Composite Materials: Processing, Microstructures, Bulk and Interfacial Properties, Characterization Methods, and Applications (M. D. Sacks, ed.). Am. Cer. Soc., Westerville, OH, 1991, pp. 665–667.

173.R. Lundberg, L. Kahlman, R. Pompe, and R. Carlsson. SiC-Whisker-Reinforced Si3N4 Composites. Am. Cer. Soc. Bull. 66(2):330–333, 1987.

174.S. J. Buljan, J. G. Baldoni, and M. L. Huckabee. Si3N4-SiC Composites. Am. Cer. Soc. Bull. 66(2):347–352, 1987.

175.S. Iio, M. Watanabe, M. Matsubara, and Y. Matsuo. Mechanical Properties of Alumina/Silicon Carbide Whisker Composites. J. Am. Cer. Soc. 72(10):1880–1884, 1989.

532

Chapter 8

176.K. Okada, N. Õtsuka, R. J. Brook, and A. J. Moulson. Microstructure and Fracture Toughness of Yttria-Doped Tetragonal Zirconia Polycrystal/Mullite Composites Prepared by an In Situ Method. J. Am. Cer. Soc. 72(12):2369–2372, 1989.

177.N. Claussen, K.-L. Weisskopf, and M. Rühle. Tetragonal Zirconia Polycrystals Reinforced with SiC Whiskers. J. Am. Cer. Soc. 69(3):288–292, 1986.

178.P. F. Becher, and T. N. Tiegs. Toughening Behavior Involving Multiple Mechanism: Whisker Reinforced and Zirconia Toughening. J. Am. Cer. Soc. 70(9):651–654, 1987.

179.R. Ruh, K. S. Mazdiyasni, and M. G. Mendiratta. Mechanical and Microstructural

Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mul- lite-SiC-Whisker Composites. J. Am Cer. Soc. 71(60):503–512, 1988.

180.J. P. Singh, K. C. Goretta, D. S. Kupperman, and J. L. Routbort. Fracture Tough-

ness and Strength of SiC-Whisker-Reinforced Si3N4 Composites. Adv. Cer. Mat. 3(4):357–360, 1988.

181.T. Kandori, S. Kobayashi, S. Wada, and O. Kamigaito. SiC Whisker Reinforced Si3N4 Composites. J. Mat. Sci. Lett. 6:1356–1358, 1987.

182.J. Dusza and D. Sajgalik˘ . Mechanical Properties of Si3N4 + βSi3N4 Whisker Reinforced Ceramics. J. Eur. Cer. Soc. 9:9–17, 1992.

183.G. H. Campbell, M. Rühle, B. J. Dalgleish, and A. G. Evans. Whisker Toughening: A Comparison Between Aluminum Oxide and Silicon Nitride Toughened with Silicon Carbide. J. Am. Cer. Soc. 73(30):521–530, 1990.

184.V. S. Stubican, R. C. Bradt, F. L. Kennard, W. J. Minford, and C. C. Sorell. Ceramic Eutectic Composites. Tailoring Multiphase and Composite Ceramics, Materials Science Research 20 (R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham, eds.). Plenum Press, New York, 1986, pp. 103–113.

185.C. C. Sorell, V. S. Stubican, and R. C. Bradt. Mechanical Properties of ZrC-ZrB2 and ZrC-TiB2 Directionally Solidified Eutectics. J. Am. Cer. Soc. 69(4):317–321, 1986.

186.M. D. Brumels and B. J. Pletka. Fracture Initiation in the Directionally Solidified NiO-CaO Eutectics. J. Am. Cer. Soc. 70(5):305–310, 1987.

187.T. Mah, A. Parthasarathy, and L. E. Matson. Processing and Mechanical Properties

of Al2O3/Y5Al5O12 (YAG) Eutectic Composites. Cer. Eng. Sci. Proc. 11(9–10): 1617–1627, 1990.

188.J.-M. Yang, S. M. Jeng, and S. Chang. Fracture Behavior of Directionally Solidified Y3Al5O12/Al2O3 Eutectic Fiber. J. Am. Cer. Soc. 79(5):1218–1222, 1996.

189.R. W. Rice, C. Cm. Wu, and K. R. McKinney. Unpublished work at the US Naval Res. Lab, cera 1975–1980.

190.U. Krohn, H. Olapinski, and U. Dworak. US patent 4,595,663, 6/17/1986.

191.L. Mazerolles, D. Michel, and R. Portier. Microstructural and Mechanical Behav-

ior of Al2O3-ZrO2 (Y2O3) Oriented Eutectics. J. de Phys. 47, (Suppl.2):C1- 335–339, 1986.

192.J. Echigoya, Y. Takabayashi, and H. Suto. Hardness and Fracture Toughness of Di-

rectionally Solidified Al2O3 - ZrO2 (Y2O3) Eutectics. J. Mat. Sci. Lett. 5:153–154, 1986.

193.C. Hulse and J. Batt. The Effect of Eutectic Microstructures on the Mechanical

Particle (and Grain) Effects

533

Properties of Ceramic Oxides. United Aircraft Res. Lab. Report for ONR Contract N00014-69-C-0073, 5/1974.

194.F. L. Kennard, R. C. Bradt, and V. S. Stubican. Mechanical Properties of the Direc-

tionally Solidified MgO-MgAl2O4 Eutectic. J. Am. Cer. Soc. 59(3-4):160–163, 1976.

195.B. D. Flinn, M. Rühle, and A. G. Evans. Toughening in Composites of Al2O3 Reinforced with Al. Acta. Metall. 37(11):3001–3006, 1989.

196.J. Wang, C. B. Ponton, and P. M. Marquis. Silver-Toughened Alumina Ceramics. Trans. J. Brit. Cer. Soc. 92:71–74, 1993.

197.W. H. Tuan and R. J. Brooks. The Toughening of Alumina with Nickel Inclusions.

J.Eur. Cer. Soc. 6:31–37, 1990.

198.M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara. Microstructure and Mechanical Behavior of 3Y-TZP/Mo Nanocomposites Processing and Novel Interpenetrated Intragranular Microstructure. J. Mat. Sci. 31:2849–2858, 1996.

199.M. Nawa, T. Sekino, and K. Niihara. Fabrication and Mechanical Behavior of

Al2O3/Mo Nanocomposites Processing and Novel Interpenetrated Intragranular Microstructure. J. Mat. Sci. 29:3185–3192, 1994.

200.W. B. Chou, W. H. Tuan, and S. T. Chang. Preparation of NIAl Toughened Al2O3 by Vacuum Hot Pressing. Brit. Cer. Trans. 95(2):71–74, 1996.

201.M. F. Ashby, F. J. Blunt, and M. Bannister. Flow Characteristics of Highly Constrained Metal Wires. Acta Metall. 37(7):1847–1857, 1989.

202.Y.-H. Yun and S.-C. Choi. The Contributions of Microstructural Characteristics and Residual Stress Distribution to Mechanical Properties of AlN/W Composite System. J. Mat. Sci. 33:707–712, 1998.

203.V. Krstic, P. S. Nicholson, and R. G. Hoagland. Toughening of Glasses by Metallic Particles. J. Am. Cer. Soc. 64(9):499–504, 1981.

204.E. Breval, Z. Deng, S. Chiou, and C. G. Pantano. Sol-Gel Prepared Ni-Alumina Composite Materials. J. Mat. Sci. 27:1464–1468, 1992.

205.T. Sekino, T. Nakajima, S. Ueda, and K. Niihara. Reduction and Sintering of a Nickel-Dispersed-Alumina Composite and Its Properties. J. Am. Cer. Soc. 80(5):1139–1148, 1997.

206.D. B. Marshall, W. L. Morris, B. N. Cox, and M. S. Dadkhan. Toughening Mechanisms in Cemented Carbides. J. Am. Cer. Soc. 73(10):2938–2943, 1990.

207.K. Hirano. Toughening Mechanism for Ceramics by a Ductile Metallic Phase. J. Mat. Sci. Lett. 13:1219–1221, 1996.

208.D. Han and J. J. Mecholsky. Fracture Behavior of Metal Particulate-Reinforced WC-Co Composites. J. Mat. Sci Eng. A170:293–302, 1991.

209.P. A. Trusty and J. A. Yeomans. Crack-Particle Interactions in Alumina-Iron Composites. Cer. Eng. Sci. Proc. 14(9–10):908–913, 1993.

210.A. J. Pyzik and D. R. Beaman. Al-B-C Phase Development and Effects on Mechan-

ical Properties of B4C/AlDerived Composites. J. Am. Cer. Soc. 78(20):305–312, 1995.

211.L. A. Simpson and A. Wasylyshyn. Fracture energy of Al2O3 Containing Mo Wire.

J.Am. Cer. Soc. 54(1):56, 1971.

212.J. Brennan. Development of Fiber Reinforced Ceramic Matrix Composites. United

534

Chapter 8

Technologies Research Center Report No. R911848-4 for US Naval Air Systems Command Contract N62269-74-C-0359, 3/1975.

213.W.-H. Gu, K. T. Faber, and R. W. Steinbrech. Microcracking and R-Curve Behavior in SiC-TiB2 Composites, Acta Metall Mater. 40(11):3121–3128, 1992.

214.W.-H. Gu and K. T. Faber. Tensile Behavior of Microcracking SiC-TiB2 Composites. J. Am. Cer. Soc. 78(6):1507–1512, 1995.

215.K. T. Faber and A. G. Evans. Crack Deflection Processes—II Experiment. Acta Metall. 31(4):577–584, 1983.

216.J. C. Swearengen, E. K. Beauchamp, and R. J. Egan. Fracture Toughness of Reinforced Glasses, Fracture Mechanics of Ceramics, Crack Growth and Microstructure 4 (R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds.). Plenum Press, New York, 1978, pp. 973–987.

9

Particle Dependence of

Tensile Strength of Ceramic

Composites at 22°C

I.INTRODUCTION

Chapter 8 addressed crack propagation and fracture toughness in ceramic composites (along with elastic properties). This chapter addresses the tensile (flexure) strength of such composites. If fracture toughness were a clear predictor of tensile strength, there would only be limited information to add in this chapter, since toughness and flaw size and character would determine strength. In such cases the focus would thus be primarily on the degree of strength variations, e.g. as measured by Weibull moduli, and the sources and character of flaw variations, which are addressed (Sec. IV). However, more extensive examination of strength–particle dependence reveals frequent opposite trends of toughness and tensile strength that are even more serious than found for monolithic ceramics in Chapters 2 and 3. Processing defects and microstructural heterogeneities are one factor in these strength–toughness differences. However, the often significant opposite trends of strength and toughness with particle parameters are again more fundamentally attributed to effects of crack size differences between most toughness tests and normal strength behavior, which are an important focus of this chapter. Finally note that the order of the types of composites covered in this chapter is very similar to that of Chapter 8 for cross comparison, but some changes have been made for organizational purposes.

Another aspect of this chapter and a source of added information is much

535

536

Chapter 9

earlier work on composites where strengths were studied but toughness measurements were not developed or in common use. This strength data provides insight into other important factors such as the separation of dispersed particles (λ), consideration of which has been largely neglected in the focus on crack bridging and related R-curve effects with large cracks. It will be shown that considerable strength data varies as λ-1/2, and that this dependence is related to the grain size (G) dependence of strengths of monolithic ceramics. The similarities between monolithic and composite ceramics are also shown by strength variations, e.g. Weibull moduli of composites also often being very similar to those of monolithic ceramics.

II.THEORETICAL BACKGROUND

In principle all the models and concepts considered for crack propagation and toughness are applicable to strength. However, as noted above and in Chapters 2 and 3, there is the important issue of the pertinence of mechanisms whose effectiveness is most significant at large crack sizes, not at the much smaller cracks typically controlling strengths. Serious attention to this issue has been largely absent, so effects can often only be inferred. Thus the implication that crack bridging controls strengths needs further examination in view of its significant dependence on crack size (as well as other uncertainties, Chapters 2, 3, 8). Other mechanisms must also be examined in terms of their crack size dependence, as well as in terms of dependence on volume fraction of dispersed phase. In all cases the central issue is typically the crack size relative to the strength controlling microstructure. Thus the effects of stresses in and around dispersed particles, which has not been found to be a major factor in fracture toughness, may be more important when flaws are on the scale of the dispersed particles and where the volume fraction of dispersed phase is modest. At higher volume fractions crack interactions with the particles may be driven more by their number (and size) than their type or level of stress (unless leading to microcracking, discussed below). Clearly possible line tension effects depend directly on the scale of the crack versus that of the second phase spatial and size distributions, diminishing with increasing second phase content (via their effect on resultant spacing). Similarly, crack deflection presumably becomes less effective beyond some levels of second phase size and content. While this is also likely to be true for fiber pullout, probably at higher fiber volume fractions, even then some systems may perform well at very high levels of fibers (e.g. as shown by ropes on the one hand and implied by natural fibrous materials such as jades, Fig. 8.15D).

Another basic factor that must be considered in strength is that in addition to (or instead of) the mechanisms impacting fracture toughness, there can be effects of composite microstructure on failure causing flaws. A model was proposed by Hasselman and Fulrath [1] for ceramic composites where flaw

Particle Dependence of Tensile Strength

537

sizes could become constrained by the dispersed phase (Fig. 9.1), similar to the line tension model (Fig. 8.4), but with the flaw size being constrained between two adjacent particles. Thus when the flaw size in the matrix material from external sources, e.g. machining, was smaller than the spacings between dispersed particles, there would be no effect or limit on the flaw size, and hence no or limited effect of the composite microstructure on strength (e.g. Fig. 8.4B). On the other hand, as the particle spacing decreases below the flaw size expected in the matrix, the flaw size would be limited by the spacing between two adjacent particles, so strength would vary as λ-1/2, with the slope of strength–λ-1/2 plots being the composite fracture toughness (when corrected for flaw size being a radius and λ a diameter). Note that this mechanism, while

FIGURE 9.1 Schematic plot of tensile (or flexure) strength versus the inverse square root of the mean separation between dispersed particles [λ-1/2, e.g. with λ obtained from Eq. (9.1)]. Note (1) region A of little or no strength dependence, where the spacings are larger than the flaw size (c, e.g. from machining), and (2) that the slope of the line of increasing strength with decreasing λ once λ ≤ c in region B is the toughness controlling strength (when corrected for flaw size being a radius and λ a diameter, as for monolithic ceramics).

538

Chapter 9

similar to, and possibly impacted by, other effects of composites on machining flaws, is a basic mechanism that can occur independently of other machining flaw effects.

A key flaw factor that needs to be considered is machining flaw generation, where flaw character and size are functions of the local material elastic moduli, toughness and hardness [e.g. via Eq. (3.2)], and machining conditions [2,3]. This is different from such flaws being specifically constrained by the spacing between particles, as was discussed earlier, and can occur independently of, or in addition to, such flaw constraint effects. Subsequent evidence is shown in this chapter that this plays a major role in strengths of composite, as with monolithic, ceramics. More attention to this and other flaw factors is needed, e.g. residual surface compressive stresses generated by machining many ceramics, and possibly somewhat greater in materials with ZrO2 transformation toughening, which can be important. Another factor is generation of flaws by microcracking and possible linking of microcracks with one another or with machining flaws, again with size and spacing of such cracks relative to the flaw size controlling strength being important.

III.PARTICLE PARAMETER EFFECTS ON TENSILE STRENGTHS OF CERAMIC COMPOSITES

A.Composites with Glass Matrices

1.A Synthetic Glass Matrix Composites

Consider first synthetic composites made by consolidating glass matrices around dispersed crystalline particles, beginning with Binns’ [4] earlier, substantial study of such composites with up to 40 v/o of zircon or alumina particles (of 10, 45, or 180 m dia.) in glass matrices of varying thermal expansions. Both sets of composites with φ=0.2 showed a maximum in E when the thermal expansion of the glass and dispersed particles were matched, progressively decreasing as the expansion difference increased, probably somewhat greater when the glass expansion exceeded that of the dispersed phase versus when it was lower than that of the dispersed phase by the same increment (Chap. 8, Sec. III). Thus the Young’s modulus (E) versus glass expansion curves for the two sets of composites were very similar except that the maximum E for the zircon composite was 20% lower than that with Al2O3 particles and shifted to lower expansion by the alumina–zircon expansion difference. There was no effect of particle size on E with either type of particle, except for substantially greater decreases for the coarsest Al2O3 as the glass expansion increasingly exceeded that of the Al2O3.

Biaxial flexure strengths of these composites with the coarsest particles also showed a maximum when the expansions of the glass and the Al2O3 or ZrO2 dispersed phase were matched. The decreases in strengths with increasing ex-

Particle Dependence of Tensile Strength

539

pansion mismatch followed those of E, again with some probable greater decrease as the glass expansion exceeded that of the particles. All composites had increasing strengths as φ increased, but at differing rates, levels, or both. Composites of Al2O3 particles with matching matrix expansion and intermediate or finer particles had 20% higher strengths than those with the coarsest particles. However, as the glass expansion progressively exceeded that of the Al2O3 particulates, composites with the finest particles reached higher strength levels and a maximum, while composites with intermediate size particles, which had essentially the same strengths as with finer particles when the glass expansion was ≤ that of Al2O3, had maximum strengths when the expansion coefficients were the same. At higher glass expansions strengths fell sooner and to a greater degree than with the finer particles, e.g. to 75% that of the finer particle composite. In contrast, composites with 20 v/o of the coarsest Al2O3 particles had a maximum strength 2/3 that of composites with intermediate size Al2O3 particles when the expansions were the same, and strengths decreased more relative to composites with intermediate and especially finer Al2O3 particles as expansion differences increased in either direction, but again with greater decreases with glass expansion exceeding that of Al2O3. Composites with zircon particles had much less increase in strengths as φ increased with intermediate or coarser particles than with fine particles, so the net result was strengths of the latter 2 times those of the former at φ= 0.4 (and ≥or 70% those of composites with respectively intermediate or coarser Al2O3 particles). Thus this more comprehensive work shows substantial parallels between Young’s modulus and strength behavior with similar effects based on the sign, and especially the magnitude, of the particle–matrix expansion difference, as well as effects of particle size (and composition, and hence probably E in the greater decreases in E of composites with larger Al2O3, but not zircon, particles). Analysis of this data shows a systematic dependence of strength on particle size in conjunction with other key parameters such as φ, consistent with behavior of other similar composites, as will be discussed below (Figs. 9.2A, B).

Hasselman and Fulrath’s [1] strength data for synthetic composites of Al2O3 particles of differing sizes and volume fractions in a glass matrix of nearly the same thermal expansion showed the bilinear behavior of Fig. 1 when plotted versus the mean free spacing between particles, λ, per Fullman’s equation,

λ = 2D(1-φ)(3φ)-1

(9.1)

leading to their model for the strength of composites of discrete ceramic particles in a ceramic matrix. Again, their rationale for this plot and behavior was that at larger λ values machining flaws controlling strengths would be < λ, so that λ would have no effect on strengths as shown, but as λ decreased it would reach a point where λ= the flaw size, beyond which decreasing λ would then constrain the flaw size to λ and hence increase strength in proportion to λ–1/2. Both the