- •Экзамен по биологии
- •2) Жизнь, как феномен материальности мира. Критика идеалистических и метафизических представлений о сущности жизни. Фундаментальные свойства жизни, как особого явления.
- •10) Транскрипция биоинформации с днк на рнк как матричный процесс – фазы инициации, элонгации, терминации. Регуляция генной активности у про- и эукариот.
- •Фаза инициации
- •Фаза элонгации
- •Фаза терминации
- •13) Трансляция биоинформации – рибосомный цикл. Биосинтез белка.
- •Адресная доставка полипептидов
- •Детекция и уничтожение (деградация) белков.
- •15) Особенности экспрессии генетической информации у про- и эукариот. Взаимосвязь между геном и признаком.
- •16) Мутационная генотипическая изменчивость. Генные мутации. Характеристика мутаций ядерных генов. Причины и механизмы возникновения генных мутаций. Гены и здоровье человека.
- •Гены и здоровье
- •19) Митотический (пролиферативный) цикл клетки. Фазы митотического цикла. Главные механизмы пролиферативного цикла. Регуляция митоза. Амитоз. Эндомитоз, политения, их значения.
- •21) Геномный уровень организации генетического аппарата, его специфический вклад в явления наследственности и биологической изменчивости.
- •5) Цитологические и статистические основы моно-,ди- и полигибридного скрещиваний. Условия менделирования признаков. Менделирующие признаки у человека.
- •7) Генотип как целостная система. Взаимодействие неаллельных генов: эпистаз, копмлементарность, полимерия. Примеры проявления в популяциях человека.
- •8) Сцепленное наследование. Группы сцепления. Основные положения хромосомной теории наследственности.
- •10) Генотипический механизм определения признаков пола у человека. Половые хромосомы и их роль в детерминации пола. Нарушения развития признаков пола у человека.
- •11) Формы изменчивости. Их значение в онтогенезе и эволюции.
- •12) Генотипическая изменчивость и ее виды. Значение в онтогенез и в эволюции.
- •Модификационная изменчивость
- •15) Человек как специфический объект генетических исследований. Медико-генетический аспект брака. Медико-генетическое консультирование. Значение генетики для медицины.
- •16) Медицинская генетика. Методы генетического анализа людей.
- •17) Онтогенетический уровень жизни. Специфические задачи и место в системе живой природы.
- •18) Онтогенез как процесс реализации наследственной информации в определенных условиях среды. Прогенез и ранний эмбриогенез. Элементарные клеточные механизмы эмбриогенеза.
- •22) Регенерация как свойство живого к самообновлению и восстановлению. Физиологическая и репаративная регенерация. Биологическое и медицинское значение регенерации.
- •2)Популяционная структура человечества. Популяционно-статистический метод в антропогенетике. Правило Харди-Вайнберга. Адаптивный потенциал и генетический полиморфизм человечества. Генетический груз.
- •3)Онтогенез как основа филогенеза. Ценогенезы. Учение а.Н. Северцова о филэмбриогенезах. Общие закономерности в эволюции систем органов. Понятие об аналогии и гомологии органов.
- •Макроэволюция. Направления эволюции групп. Формы филогенеза. Биологический прогресс и регресс. Правила эволюции групп.
- •Правила эволюции групп
- •Экологические факторы. Классификация факторов среды. Закономерности действия факторов
- •1. Закон оптимума.
- •Функции биосферы: окислительно-восстановительная, газовая, концентрационная, биохимическая. Живое вещество биосферы. Количественная и качественная характеристика. Роль в природе планеты.
- •Паразитизм как биологический феномен. Специфика среды обитания паразитов. Классификация паразитических форм животных.
- •Популяционный уровень взаимодействия паразитов и хозяев. Распределение паразитов в популяции хозяина. Специфичность в отношениях между паразитом и хозяином. Жизненные циклы паразитов.
- •Амебы: дизентерийная, кишечная, ротовая. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Трипаносомы и лейшмании. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Лейшмании. Leishmania tropica et donovani
- •Трипаносома. Trypanosoma.
- •Трихомонады и лямблии. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Лямблии. Lamblia intestinalis.
- •Ротовая трихомонада. Trichomonas tenax.
- •Урогенитальная трихомонада. Trichomonas vaginalis.
- •Токсоплазма. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Токсоплазма. Toxoplasma gondii.
- •Малярийные плазмодии. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Плазмодий. Plasmodium.
- •Балантидий. Balantidium coli.
- •Сосальщики: сибирский, китайский. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространение в Западной и Восточной Сибири.
- •Описторх (сибирский или кошачий сосальщик). Opistorchis felineus.
- •Клонорх, или китайский сосальщик (Clonorchis sinensis),
- •Сосальщики: ланцетовидный, печеночный. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Печеночный сосальщик. Fasciola hepatica et gigantica.
- •Ланцетовидный сосальщик. Dicrocoelium lancealum.
- •Сосальщики: легочный и кровяные. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика.
- •Легочный сосальщик. Paragonimus vestermani.
- •Шистосомы. Schistosomae haematobium et mansoni et japonicum.
- •Цепни: вооруженный, невооруженный и карликовый. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространенноть в Западной Сибири.
- •Бычий цепень. Taeniarhynchus saginatus.
- •Свиной цепень. Taenia solium.
- •Карликовый цепень. Hymenolepis nana.
- •Лентец широкий. Эхинококк и альвеококк. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространенноть в Западной Сибири, патогенное значение.
- •Лентец широкий. Diphyllobotrium latum.
- •Эхинококк. Echinococcus granulosus.
- •Альвеококк. Alveococcus multilocularis.
- •Аскарида человеческая. Острица. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространённость в Западной Сибири, патогенное значение.
- •Острица детская. Enterobius vermicularis.
- •Аскарида человеческая. Ascaris lumbicoides.
- •Власоглав. Кривоголовка. Некатор. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространённость в Западной Сибири, патогенное значение.
- •Власоглав. Trichocephalus trichiurus.
- •Трихинелла. Ришта. Систематическое положение, морфология, цикл развития, лабораторная диагностика, профилактика. Распространённость в Западной Сибири, патогенное значение.
- •Трихинелла. Trichinella spiralis et Trichinella nativa.
- •Ришта. Dracunculus medinensis.
- •Иксодовые клещи
- •Аргасовые клещи
- •Отряд Acariformes (акариформные клещи).
- •Надсемейство Gamasoidea (гамазоидные клещи).
- •Насекомые – механические и специфические переносчики возбудителей инфекций и инвазий. Насекомые – возбудители миазов.
Гены и здоровье
Болезни людей с доминирующей или выраженной наследственной составляющей:
Генные/моногенные болезни (гб/мгб) числом порядка 4,5 тыс., диагностируются у 3 детей из 1000, частота в популяциях – в среднем по миру 3%, в разных регионах россии – 4,2-6,5%;
При мгб известно первичное звено поражения фенотипа:
болезни ионных каналов, коллагенопатии, накопления, обмена веществ, гемоглобинопатии и т.п.;
Мгб характеризуются определенным типом наследования;
Мультифакториальные заболевания (мфз): частота – 1,5%, на их долю приходится 94-96% хронической неинфекционной патологии; при мфз наблюдается выраженная генетическая предрасположенность, но необходим “разрешающий” фактор;
Онкогенные болезни (огб): 90% огб относится к категории мфз, 10% - к категории мгб;
Врожденные пороки развития (впр);
Клинические проявления мгб многообразны; основа патогенеза – отсутствие определенного продукта, повышенное образование продукта, образование измененного продукта; важно - генные мутации происходят не только в структурных генах; генокопирование и фенкопирование;
17) Хромосомы – структурные компоненты ядра. Структура и функции хромосом, их динамика в клеточном и митотическом цикле. Хромосомы и здоровье человека.
Хромосомы – нуклеопротеидные структуры в ядрах эукариот, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки. Число хромосом в клетках каждого биологического вида постоянно.
Строение.
1)Центромера (первичная перетяжка) это место соединения двух хроматид; к центромере присоединяются нити веретена деления.
По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на:
акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
субметацентрические (неравноплечие, напоминающие по форме букву L);
метацентрические (V-образные хромосомы, равноплечие).
2)Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме. Теломеры – концевые участки хромосом, содержащие до 10 тысяч пар нуклеотидов с повторяющейся последовательностью. Хромосомы состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями.
Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов.
Функция хромосом заключается:
- В хранении наследственной информации. Хромосомы являются носителями генетической информации.
- В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК.
- В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.
Хромосомы сохраняют свою структурную целостность на протяжении всего митотического (клеточного) цикла; Структура хромосом меняется путем изменения степени компактизации (уплотнения) ее материала по длине;
Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» считывания информации с молекулы ДНК.
В первой половине митоза хромосомы состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.
Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость.
ЭУХРОМАТИН - вещество хромосомы, сохраняющее деспирализованное (диффузное) состояние в покоящемся ядре и спирализующееся при делении клеток. Содержит большинство структурных генов организма.
Описано порядка 1000 хромосомных синдромов (хромосомных болезней): в перечень включены синдромы, обусловленные изменением числа отдельных хромосом – моносомии, трисомии;
Согласно современным данным – не менее 50% спонтанных (самопроизвольных) абортов или выкидышей обусловлено хромосомными мутациями; частота хромосомных аномалий среди новорожденных – 0,7%, среди мертворожденных – 5%; хромосомные аномалии у 2-х - 4-х недельных абортусов – 60 -70%, у абортусов 1-го триместра беременности – 50%, у абортусов 2-го триместра – 25-30%; у плодов, погибших после 20 недель беременности, – 7%;
Признаки, указывающие на возможность хромосомной аномалии: отставание ребенка в физическом и психическом развитии, карликовость, черепно-лицевой дисморфизм, пороки развития внутренних органов;
Вероятность рождения ребенка с хромосомной аномалией выше, если возраст женщины 35 лет и более; хромосомные мутации наследуются ребенком чаще от матери; если в семье есть ребенок с хромосомной мутацией, то вероятность 2-го больного ребенка выше;
Синдром «кошачьего крика» Делеция короткого плеча хромосомы 5 - 5p-
Синдром Патау 1:6000 Ж:М 1:1 Трисомия 13 47( +13 ) .95% умирает в первый год
Синдром Эдвардса 1:7000 Ж>М 4:1 Трисомия 18 47 (+18). Продолжительность жизни 2-3 месяца
18) Хромосомные мутации – инструмент комбинативной генотипической изменчивости: изменение дозы генов, перераспределение генов между хромосомами, изменения положения генов в хромосоме. Типы хромосомных мутаций.
Хромосомные мутации, в отличие от генных, не дают новой биологической (генетической) информации; они – инструмент комбинативной генотипической изменчивости. Заключаются в сокращении или увеличении числа определённых генов (изменение дозы генов), перераспределении генов между хромосомами, изменении положения генов в хромосоме;
Структурной предпосылкой хромосомной мутации является нарушение ее целостности - разрыв;
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают:
1) при кроссинговере, во время профазы первого мейотического деления;
2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления;
3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления
4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.
Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации.
В свою очередь численные мутации делятся на ан-эуплоидии, когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом, и полиплоидии, когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией, а возникновение дополнительного гомолога у любой пары хромосом — трисомией.
Структурные хромосомные мутации представлены транслокациями (реципрокными и робертсоновскими), делециями, инсерциями, инверсиями (парацентрическими и перицентрическими), кольцами и изохромосомами. -
Внутрихромосомные аберрации — аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.
Делеция — утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.
Инверсия — встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.
Дупликация — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР, включая микроцефалию, задержку физического, психического и интеллектуального развития).
Межхромосомные аберрации — обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентрическая хромосома вместо двух акроцентрических).
Изохромосомные аберрации — образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название — центрическое соединение).
