- •Система отсчёта
- •Кинематика вращательного движения.
- •Cвязь кинематических величин поступательного и вращательного движения.
- •9.2. Мощность
- •2. Динамика вращательного движения материальной точки и твердого тела Краткая теория
- •1.Определение колебательного движения
- •Вынужденные колебания. Резонанс
- •Сложение взаимно перпендикулярных колебаний
- •§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •Внутренняя энергия
- •Теплота и работа
- •Первый закон термодинамики
- •Закон сохранения электрического заряда.
- •Основной закон электростатики – закон кулона
- •Единица электрического заряда
- •Принцип суперпозиции электрических полей
- •2.3. Теорема Остроградского – Гаусса (теорема Гаусса)
- •2.4. Применение теоремы Гаусса к расчету электрических полей
- •Поле равномерно заряженной бесконечной плоскости
- •Поле, образованное двумя разноименными заряженными плоскостями (бесконечно большими)
- • Поле бесконечной заряженной нити
- •Поле, образованное заряженной сферической поверхностью
- •Проводники в электростатическом поле
- •3.1. Распределение зарядов на проводнике.
- •Электрическая емкость уединенного проводника
- •Закон ома в дифференциальной форме
- •II. Электрическое сопротивление проводника
- •12.Обобщенный закон Ома в интегральной форме для участка цепи и полной цепи.
- •Напряжение на участке цепи.
- •Энергия и мощность электрического тока
- •§ 13.6 Работа и мощность тока. Закон Джоуля-Ленца
- •§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •Закон Джоуля-Ленца в дифференциальноё форме
- •5. Магнитное поле постоянного тока
- •1.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •5. Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток
- •Потокосцепление
- •Вопрос29. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме.
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Закон электромагнитной индукции (закон Фарадея).
- •Явление самоиндукции
- •42. Явление самоиндукции. Индуктивность. Индуктивность соленоида. Работа перемещения проводника с током и контура с током в магнитном поле. Энергия магнитного поля соленоида.
- •§ 16.4 Энергия магнитного поля
- •§ 174. Интерференция света в тонких пленках
- •Кольца Ньютона
- •4) Явление интерференции также применяется в очень точных измерительных приборах, называемыхинтерферометрами.Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.
- •19. Дифракция света
- •19.1 Дифракция Френеля и Фраунгофера
- •19.2. Принцип Гюйгенса-Френеля
- •19.2.1. Математическая формулировка принципа Гюйгенса-Френеля
- •19.3. Зоны Френеля
- •19.3.1. Дифракция Френеля на круглом отверстии
- •19.3.2. Дифракция Фраунгофера на щели
1.Определение колебательного движения
Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования. Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения. Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.
Механические колебания Колебания - это любой физический процесс, характеризующийся повторяемостью во времени.
Волнение моря, качание маятника часов, вибрации корпуса корабля, биение человеческого сердца, звук, радиоволны, свет, переменные токи — все это колебания.
В процессе колебаний значения физических величин, определяющих состояние системы, через равные или неравные промежутки времени повторяются. Колебания называются периодическими, если значения изменяющихся физических величин повторяются через равные промежутки времени.
Наименьший промежуток времени Т, черезкоторый значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называетсяпериодом колебаний.
Число
полных колебаний n , совершаемых
за единицу времени, называется частотой колебаний
этой величины и обозначается
через ν . Период и частота
колебаний связаны соотношением
:
Любое колебание обусловлено тем или иным воздействием на колеблющуюся систему. В зависимости от характера воздействия, вызывающего колебания, различают следующие виды периодических колебаний: свободные, вынужденные, автоколебания, параметрические.
Свободные колебания — это колебания, происходящие в системе, предоставленной самой себе, после выведения ее из состояния устойчивого равновесия (например, колебания груза на пружине).
Вынужденные колебания — это колебания, обусловленные внешним периодическим воздействием (например, электромагнитные колебания в антенне телевизора).
Механические колебания
Автоколебания — свободные колебания, поддерживаемые внешним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).
Параметрические колебания — это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).
Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.
Простейшими из периодических колебаний
являются гармонические колебания.
Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.
2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.
Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное
х — колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».
периодических колебаний называется число полных колебаний за единицу времени (1 секунду) — это может быть не целое число.
Т — период колебаний Период — время одного полного колебания.
Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t — время
Гармоническое колебание
Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.
График гармонического колебания
График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.
Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.
Уравнение гармонического колебания
Уравнение гармонического колебания устанавливает зависимость координаты тела от времени
График
косинуса в начальный момент имеет
максимальное значение, а график синуса
имеет в начальный момент нулевое
значение. Если колебание начинаем
исследовать из положения равновесия,
то колебание будет повторять синусоиду.
Если колебание начинаем рассматривать
из положения максимального отклонения,
то колебание опишет косинус. Или такое
колебание можно описать формулой синуса
с начальной фазой
.
Изменение скорости и ускорения при гармоническом колебании
Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.
Если колебание описывать по закону косинуса
Если колебание описывать по закону синуса
тогда
- дифференциальное уравнение точки, совершающей колебательное движение (дифференциальное уравнение пружинного маятника).
-
циклическая частота колебаний пружинного
маятника.
-
частота колебаний пружинного маятника.
-
связь циклической частоты с частотой
колебаний и периодом.
-
связь периода и частоты колебаний.
Момент силы, действующей на маятник равен,
(7.9)
Знак «» указывает, что момент силы противоположен направлению поворота. Так как угол φ мал, то sin φ = φ. Основное уравнение динамики для вращающегося тела имеет вид
(7.10)
Для
математического маятника момент
инерции
,
а угловое ускорение
Тогда
уравнение движения математического
маятника запишется в виде:
(7.11)
Перепишем это уравнение в следующем виде:
(7.12)
-
циклическая частота колебаний
математического маятника.
-
период колебаний математического
маятника.
В
реальных системах всегда существуют некоторые
силы сопротивления, препятствующие
развитию колебательных процессов. Для
установления характера колебательного
движения в этом случае будем считать,
что наряду с упругой или квазиупругой
силой Fy в
системе действует сила трения,
пропорциональная скорости и направленная
противоположно ей: Fтр =
.
Тогда учет влияния этих двух сил на
характер движения приводит к
следующему дифференциальному
уравнению:
8)
Разделив левую и правую части уравнения (8) на m , обозначив r/m = 2b и сохранив обозначение к/m = w02 , приведем это уравнение к виду:
(9)
Решение этого уравнения имеет вид:
(10)
Формула (10) представляет собой смещение при затухающем колебании как функцию времени и параметров системы b и w. Коэффициент b = r/2m имеет смысл коэффициента затухания. Из формулы (10) видно, что в затухающих колебаниях амплитуда уменьшается со временем. Причем, колебания затухают тем быстрее, чем больше коэффициент затухания b. По сравнению с гармоническими колебаниями уменьшается также и циклическая частота колебаний w. Это уменьшение зависит от коэффициента затухания. Оказывается, что
(11)
Колебательный процесс может происходить лишь при условии: (w02 - b 2)>0, когда частота w в формуле (11) является действительной величиной . Если же затухание в системе слишком велико (w0< b ) , то под корнем в формуле (11) оказывается отрицательная величина, - в этом случае движение не имеет периодического характера.
Графически затухающее колебания представлено на рис.2, где сплошной линией показана зависимость смещения от времени, а пунктирной - экспоненциальный закон убывания амплитуды.
Затухающие колебания. Декремент затухания, коэффициент затухания, время релаксации
Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.
Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.
Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения
где r - коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.
Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r. По второму закону Ньютона
где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.
- дифференциальное уравнение затухающих колебаний.
- уравнение затухающих колебаний.
ω – частота затухающих колебаний:
Период затухающих колебаний:
За
тухающие
колебания при строгом рассмотрении не
являются периодическими. Поэтому о
периоде затухаюших колебаний можно
говорить, когда β мало.
Если
затухания выражены слабо (β→0), то
.
Затухающие колебания можно
рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону
В уравнении (1) А0 и φ0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания
Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз
τ - время релаксации.
Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затуханияD, который равен отношению амплитуд, отстоящих по времени на период:
Логарифмический декремент затухания равен логарифму D:
Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний уменьшилась в е раз. Логарифмический декремент затухания - постоянная для данной системы величина.
Еще одной характеристикой колебательной система является добротность Q.
Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.
Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.
Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.
Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.
