- •Система отсчёта
- •Кинематика вращательного движения.
- •Cвязь кинематических величин поступательного и вращательного движения.
- •9.2. Мощность
- •2. Динамика вращательного движения материальной точки и твердого тела Краткая теория
- •1.Определение колебательного движения
- •Вынужденные колебания. Резонанс
- •Сложение взаимно перпендикулярных колебаний
- •§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •Внутренняя энергия
- •Теплота и работа
- •Первый закон термодинамики
- •Закон сохранения электрического заряда.
- •Основной закон электростатики – закон кулона
- •Единица электрического заряда
- •Принцип суперпозиции электрических полей
- •2.3. Теорема Остроградского – Гаусса (теорема Гаусса)
- •2.4. Применение теоремы Гаусса к расчету электрических полей
- •Поле равномерно заряженной бесконечной плоскости
- •Поле, образованное двумя разноименными заряженными плоскостями (бесконечно большими)
- • Поле бесконечной заряженной нити
- •Поле, образованное заряженной сферической поверхностью
- •Проводники в электростатическом поле
- •3.1. Распределение зарядов на проводнике.
- •Электрическая емкость уединенного проводника
- •Закон ома в дифференциальной форме
- •II. Электрическое сопротивление проводника
- •12.Обобщенный закон Ома в интегральной форме для участка цепи и полной цепи.
- •Напряжение на участке цепи.
- •Энергия и мощность электрического тока
- •§ 13.6 Работа и мощность тока. Закон Джоуля-Ленца
- •§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •Закон Джоуля-Ленца в дифференциальноё форме
- •5. Магнитное поле постоянного тока
- •1.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •5. Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток
- •Потокосцепление
- •Вопрос29. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме.
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Закон электромагнитной индукции (закон Фарадея).
- •Явление самоиндукции
- •42. Явление самоиндукции. Индуктивность. Индуктивность соленоида. Работа перемещения проводника с током и контура с током в магнитном поле. Энергия магнитного поля соленоида.
- •§ 16.4 Энергия магнитного поля
- •§ 174. Интерференция света в тонких пленках
- •Кольца Ньютона
- •4) Явление интерференции также применяется в очень точных измерительных приборах, называемыхинтерферометрами.Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.
- •19. Дифракция света
- •19.1 Дифракция Френеля и Фраунгофера
- •19.2. Принцип Гюйгенса-Френеля
- •19.2.1. Математическая формулировка принципа Гюйгенса-Френеля
- •19.3. Зоны Френеля
- •19.3.1. Дифракция Френеля на круглом отверстии
- •19.3.2. Дифракция Фраунгофера на щели
Потокосцепление
Ра
ссмотрим
катушку с токомi,
состоящую из нескольких витков (рис.2.4).
Изобразим линии магнитной индукции,
пересекающие поверхность
,
ограниченную этим контуром, и образующие
поток
.
Из рисунка видно, что различные силовые
линии пересекают указанную поверхность
различное число раз. Для учета этого
обстоятельства используется такое
понятие, какпотокосцепление
.
Потокосцепление можно получить, умножая
поток магнитной индукции на число
витков, с которым он сцепляется,
и складывая полученные произведения. При этом слагаемые берутся со знаком “плюс” для трубок, связанных с направлением тока правилом правого винта, в противном случае соответствующее слагаемое учитывается со знаком “минус”.
Э.д.с., индуктируемая в контуре, определяется величиной потокосцепления , поэтому
Если
может быть принято допущение о том, что
все линии магнитной индукции сцепляются
со всеми
витками
катушки, потокосцепление и магнитный
поток связаны простым соотношением
Вопрос29. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме.
Потоком вектора магнитной индукции(магнитным потоком) dФ сквозь малую поверхность плошадью dS называется скалярная величина
Сквозь произвольную поверхность S магнитный поток равен
Магнитный поток сквозь произвольную замкнутую поверхность равен нулю
(
теорема
Остроградского-Гаусса для магнитного
поля)
Этот результат означает, что в природе не существует "магнитных зарядов" – физических объектов, на которых бы начинались или заканчивались линии магнитной индукции.
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.
Для определения этой работы рас-
190
смотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. При указанных на рис. 177 направлениях тока и поля сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна
F=IBl.
Под действием этой силы проводник переместится параллельно самому себе на отрезок Ах из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна
dA=Fdx=IBldx =IBdS= IdФ,
так как ldx=dS— площадь, пересекаемая проводником при его перемещении в магнитном поле, ВdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,
dA=IdФ, (121.1)
т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.
Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно
разобьем на два соединенных своими концами проводника: ABC и CDA.
Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников ЛВС (dA1) и СDA (dА2), т. е.
dA=dA1+dA2. (121.2)
Силы, приложенные к участку CDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2>0. Согласно (121.1), эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDAпересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно,
dA2= I(dФ0+dФ2). (121.3)
Силы, действующие на участок ЛВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA1<0.Проводник ЛВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно,
dA1=I(dФ0+dФ1). (121.4)
Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:
dA=I(dФ2 -dФ1),
где dФ2-dФ1=dФ'— изменение магнитного потока через площадь, ограниченную контуром с током. Таким образом,
dA=IdФ'. (121.5)
Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном перемещении контура в магнитном поле:
A=IФ, (121.6)
т. е. работа по перемещению замкнутого
191
контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного
с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Правило Ленца.
Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.
Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией.
