Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.72 Mб
Скачать

5. Магнитное поле постоянного тока

Магнитные явления были впервые обнаружены и изучены на естественных магнитах. Этим словом еще в Древней Греции были названы куски породы, добываемые вблизи г. Магнезия на территории современной Турции. Оказалось, что эти “магнитные камни” обладают способностью притягивать к себе куски железа. Однако понимание процессов, происходящих в магните, требует предварительного изучения боле простых и фундаментальных явлений и понятий.

До сих пор мы рассматривали процессы, происходящие внутрипроводников с токами. Описывая электропроводность тел, мы сформулировали законы постоянного тока. Однако эти законы не описывают всех явлений, наблюдаемых при прохождении электрического тока в проводниках. Опыты показали, что вокруг проводников с током так же, как и вокруг постоянных магнитов, существует силовое поле, которое легко можно обнаружить по его действию на движущиеся электрические заряды, другие проводники с токами и постоянные магниты.Магнитное поле – форма существования материи, посредством которой осуществляется действие на движущиеся электрические заряды и постоянные магниты со стороны других движущихся зарядов и постоянных магнитов.

Постоянные магниты оказывают ориентирующее действие на магнитную стрелку, помещенную близи них. Постоянное магнитное поле не действует на неподвижные электрически заряженные частицы и тела. В свою очередь, эти частицы и тела не действуют на помещенную близи них магнитную стрелку, т.е. не создают магнитное поле.

Вектор магнитного потока тока с контуром

,

где  – единичная положительная нормаль к контуру, направление которой связано с направлением тока в контуре правилом правого винта.

Направление нормали выбирается по правилу правого буравчика: за положительное направление нормали принимается направление поступательного движения буравчика, который вращается в направлении тока, текущего в рамке.

Если рамка содержит  витков провода, то магнитный момент рамки

.

Рамка с током будет поворачиваться в магнитном поле до тех пор, пока вращающий момент не станет равным нулю. В этом случае магнитный момент будет направлен по магнитному полю. Следовательно, магнитное поле поворачивает магнитные моменты так, чтобы они были направлены по полю

силовые линии магнитного поля – это воображаемые линии, касательные к которым в каждой точке поля совпадают по направлению с вектором магнитной индукции. 

1.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774–1862) и Ф. Саваром (1791–1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био-Савара-Лапласа для проводника с током  , элемент   которого создает в некоторой точке  (рис. 1) индукцию поля , записывается в виде:

, (1.3)

где  – вектор, по модулю равный длине   элемента проводника и совпадающий по направлению с током;  – радиус-вектор, проведенный из элемента   проводника в точку  исследуемого поля, – модуль радиуса-вектора ; –магнитная постоянная ( );  – магнитная проницаемость среды, которая в воздухе и в вакууме равна единице. Направление  перпендикулярно  и  , т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление враще­ния головки винта дает направление  , если поступательное движение винта соответ­ствует направлению тока в элементе.

Мо дуль вектора определяется выражением

, (1.4)

где  – угол между векторами  и  .

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

. (1.5)

Расчет характеристик магнитного поля ( и ) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную сим­метрию, то применение закона Био-Савара-Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.

Ма гнитное поле прямого тока, текущего по тонкому прямому проводу бесконечной длины (рис. 2). В произвольной точке  ,удаленной от оси проводника на расстояние  , векторы   от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов  можно заменить сложением их модулей. В качестве переменной интегрирования выберем угол  (угол между векторами и  ), выразив через него все остальные величины. Из рис. 2 следует:

(радиус дуги CD вследствие малости  равен  , и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (1.4), получим, что магнитная индук­ция, создаваемая одним элементом проводника, будет следующая

. (1.6)

Так как угол  для всех элементов прямого тока бесконечно длинного изменяется в пределах от 0 до , согласно (1.5) и (1.6) получим:

.

Следовательно, магнитная индукция поля прямого тока бесконечной длины

. (1.7)

Если проводник конечной длины, то  меняется от до (рис. 2) и тогда интегрируя (1.6), получим

. (1.8)

Магнитное поле в центре кругового проводника с током. Все элементы кругового проводника с током создают в центре магнитные поля одинакового направления – вдоль нормали от витка. Поэтому сложение век­торов  можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору ( ) и расстояние всех элементов проводника до центра кругового тока одинаково и равно , то согласно (1.4):

.

Тогда

.

Следовательно, магнитная индукция поля в центре кругового проводника с током имеет вид:

.

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью  ивектором магнитной индукции  Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено поправилу левой руки или поправилу буравчика. Взаимное расположение векторов  , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1.

Взаимное расположение векторов  , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на зарядq

Сила Лоренца направлена перпендикулярно векторам  и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость  лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной частицы в магнитном поле за­висят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле одно­родно и на частицы электрические поля не действуют. Если заряженная частица дви­жется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В ра­вен 0 или . Тогда по формуле (114.1) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она дви­жется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью v, перпен­дикулярной вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и нор­мальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяет­ся из условия

QvB = mv2/r,

откуда

Период вращения частицы, т. е. вре­мя Т, затрачиваемое ею на один полный оборот,

T = 2nr/v.

Подставив сюда выражение (115.1), по­лучим

т. е. период вращения частицы в однород­ном магнитном поле определяется только величиной, обратной удельному заряду

184

(Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v << с)). На этом основано действие цикли­ческих ускорителей заряженных частиц (см. §116).

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 170), то ее движение можно пред­ставить в виде суперпозиции: 1) равно­мерного прямолинейного движения вдоль поля со скоростью v||=vcos; 2) равно­мерного движения со скоростью v= vsin по окружности в плоскости, пер­пендикулярной полю. Радиус окружности определяется формулой (115.1) (в данном случае надо заменить v на v=vsin). В результате сложения обоих движений возникает движение по спирали, ось кото­рой параллельна магнитному полю (рис. 170). Шаг винтовой линии

h=v||T=vTcos.

Подставив в последнее выражение (115.2), получим

h=2mv cos/(BQ).

Направление, в котором закручивается спираль, зависит от знака заряда ча­стицы.

Если скорость v заряженной частицы составляет угол а с направлением векто­ра В неоднородного магнитного поля, ин­дукция которого возрастает в направле­нии движения частицы, то r и h уменьша­ются с ростом В. На этом основана фокусировка заряженных частиц в маг­нитном поле.

В) Частица движется со скоростью  , направленной под произвольным острым углом к вектору магнитной индукции .

Разложим вектор  на две составляющие:

параллельна вектору  ;

перпендикулярна вектору  .

Скорость  в магнитном поле не изменяется.

Частица одновременно участвует в двух движениях: она равномерно вращается со скоростью  по окружности радиусаr и движется поступательно с постоянной скоростью  в направлении, перпендикулярном плоскости вращения. Траектория заряженной частицы представляет собой винтовую линию, ось которой совпадает с линией вектора . Шаг винтовой линии (расстояние между витками): .

Для нерелятивистской частицы  и ;

Для релятивистской частицы  и .

Циркуляцией вектора В по заданному замкнутому контуру называется интеграл

 , (9.1)

где dl – вектор элементарной длины контура, направленной вдоль обхода контура, Вl =Вcosα– составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), α – угол между векторами В и dl.

Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной μо на алгебраическую сумму токов охватываемых этим контуром:

 , (9.2)

 где n – число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого винта; ток противоположного направления считается отрицательным.

Например, для системы токов, изображенных на рис.12,   .

Выражение (9.2) справедливо только для поля в вакууме, поскольку для поля в веществе

Рис.12. необходимо согласно вышеизложенной гипотезе Ампера, учитывать микротоки (молекулярные токи).

Закон полного тока для магнитного поля в веществе является обобщением вышеприведенного закона с учетом как макротоков, так и микротоков:

   , (9.3)

где I и Iо – соответственно алгебраические суммы сил макротоков (токов проводимости) и микротоков, охватываемых заданных контуром. Таким образом, циркуляция вектора магнитной индукции В по замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, характеризует результирующее поле микро- и макротоков и поэтому линии вектора магнитной индукции не имеют источников и являются замкнутыми.

Как показывает (1.4), магнитное поле макротоков описывается вектором напряженности Н, (В=μоμН). Следовательно, циркуляция вектора напряженности Н магнитного поля равна алгебраической сумме сил токов проводимости, охватываемых этим контуром

 . (9.4)

Это выражение представляет собой теорему о циркуляции вектора Н.

Между циркуляции векторов Е и Всуществует принципиальное различие. Циркуляция вектора Еэлектростатического поля всегда равна нулю, т.е. электростатическое поле является потенциальным. Циркуляции векторов ВиН магнитного поля нулю не равны. Такое поле называется вихревым, непотенциальным. Следовательно магнитное поле непотенциально.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]