- •Система отсчёта
- •Кинематика вращательного движения.
- •Cвязь кинематических величин поступательного и вращательного движения.
- •9.2. Мощность
- •2. Динамика вращательного движения материальной точки и твердого тела Краткая теория
- •1.Определение колебательного движения
- •Вынужденные колебания. Резонанс
- •Сложение взаимно перпендикулярных колебаний
- •§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •Внутренняя энергия
- •Теплота и работа
- •Первый закон термодинамики
- •Закон сохранения электрического заряда.
- •Основной закон электростатики – закон кулона
- •Единица электрического заряда
- •Принцип суперпозиции электрических полей
- •2.3. Теорема Остроградского – Гаусса (теорема Гаусса)
- •2.4. Применение теоремы Гаусса к расчету электрических полей
- •Поле равномерно заряженной бесконечной плоскости
- •Поле, образованное двумя разноименными заряженными плоскостями (бесконечно большими)
- • Поле бесконечной заряженной нити
- •Поле, образованное заряженной сферической поверхностью
- •Проводники в электростатическом поле
- •3.1. Распределение зарядов на проводнике.
- •Электрическая емкость уединенного проводника
- •Закон ома в дифференциальной форме
- •II. Электрическое сопротивление проводника
- •12.Обобщенный закон Ома в интегральной форме для участка цепи и полной цепи.
- •Напряжение на участке цепи.
- •Энергия и мощность электрического тока
- •§ 13.6 Работа и мощность тока. Закон Джоуля-Ленца
- •§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •Закон Джоуля-Ленца в дифференциальноё форме
- •5. Магнитное поле постоянного тока
- •1.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •5. Циркуляция вектора магнитной индукции. Закон полного тока.
- •Магнитный поток
- •Потокосцепление
- •Вопрос29. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме.
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Закон электромагнитной индукции (закон Фарадея).
- •Явление самоиндукции
- •42. Явление самоиндукции. Индуктивность. Индуктивность соленоида. Работа перемещения проводника с током и контура с током в магнитном поле. Энергия магнитного поля соленоида.
- •§ 16.4 Энергия магнитного поля
- •§ 174. Интерференция света в тонких пленках
- •Кольца Ньютона
- •4) Явление интерференции также применяется в очень точных измерительных приборах, называемыхинтерферометрами.Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.
- •19. Дифракция света
- •19.1 Дифракция Френеля и Фраунгофера
- •19.2. Принцип Гюйгенса-Френеля
- •19.2.1. Математическая формулировка принципа Гюйгенса-Френеля
- •19.3. Зоны Френеля
- •19.3.1. Дифракция Френеля на круглом отверстии
- •19.3.2. Дифракция Фраунгофера на щели
Энергия и мощность электрического тока
В любой замкнутой электрической цепи источник затрачивает электрическую энергию Wистна перемещение единицы положительного заряда по всей цепи: и на внутреннем и на внешнем участках.
и
;
Энергия источника определяется выражением: Wист=Eq=EIt= (U0+U)It;
Энергия источника (полезная), которая расходуется на потребителе: W=UIt;
Энергия источника (потери), которая расходуется на внутреннем сопротивлении источника: W=U0It;
Преобразование электрической энергии в другие виды энергий происходит с определенной скоростью. Эта скорость определяет электрическую мощность элементов электрической цепи:
;
Мощность источника определяется соотношением:
Мощность потребителя определяется соотношением:
§ 13.6 Работа и мощность тока. Закон Джоуля-Ленца
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq =Idt . Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по работа тока равна
dA=Udq =IU dt (13.28)
Если сопротивление проводника R, то, используя закон Ома, получим
(13.29)
Мощность тока
(13.30)
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идёт на его нагревание, и, по закону сохранения энергии,
(13.31)
Таким образом, используя выражение (13.28) и (13.31) , получим
(13.32)
§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.
Подставив выражение для сопротивления в закон Ома, получим
(13.33)
где
величина
,
обратная удельному сопротивлению,
называется удельной
электрической проводимостью вещества
проводника. Её единица – сименс на метр
(См/м).
Учитывая,
что
-
напряжённость электрического поля в
проводнике,
-
плотность тока, формулу можно записать
в виде
j = γE (13.34)
Закон Джоуля-Ленца в дифференциальноё форме
Выделим в проводнике элементарный цилиндрический объём dV=dSdℓ (ось цилиндра
совпадает
с направлением тока(рис.13.9)), сопротивление
которого
.
По закону Джоуля-Ленца, за время в этом
объёме выделится теплота
(13.35)
Количество теплоты, выделившееся за единицу времени в единице объёма, называется удельной тепловой мощностью тока. Она равна
ω= ρ∙j2 (13.36)
Используя
дифференциальную форму закона Ома (j =
γE) и соотношение
,
получим ω= j∙E=γ∙E2 (13.37)
Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников э.д.с. и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа.
Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла,— отрицательным.
Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:
Например, для рис. 148 первое правило Кирхгофа запишется так:
I1-I2+I3-I4-I5=0.
Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.
Второе правило Кирхгофа получается из обобщенного закона Ома для разветвленных цепей. Рассмотрим контур, состоящий
из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники э.д.с. считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:
Складывая почленно эти уравнения, получим
I1R1-I2R2+I3R3= ξ 1- ξ 2+ ξ 3.(101.1)
Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii, на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. ξ k, встречающихся в этом контуре:
