- •Вопросы к экзамену по биофизике, 2017: Дата: 3 июня, суббота!
- •1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.
- •2. История становления биофизики как науки. Методы изучения в биофизике.
- •3. Термодинамические (тд) системы. Параметры состояния.
- •4. Внутренняя энергия, работа и тепло.
- •5. Обратимые и необратимые процессы.
- •6. Понятие термодинамического равновесия. Равновесные и неравновесные системы.
- •7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •8. Термодинамические функции состояния (термодинамический потенциал). Свободная энергия Гиббса. Примеры использования термодинамических представлений.
- •9. Энтальпия. Закон Гесса. Примеры использования в биологических системах.
- •Виды теплоты, теплопродукция. Удельная теплопродукция. Примеры.
- •11.Второе начало термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •12. Энтропия. Свойства энтропии. Её физический и биологический смысл с позиций термодинамики и молекулярной физики.
- •13. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.
- •Работоспособность биологических систем. Градиенты.
- •Баланс энтропии при росте и развитии организмов.
- •Сравнительная характеристика стационарного состояния и термодинамического равновесия.
- •18. Характеристики устойчивого и неустойчивого стационарного состояния системы. Диссипативная структура.
- •19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.
- •20. Общие свойства систем вблизи от термодинамического равновесия. Общие свойства систем вдали от термодинамического равновесия.
- •Флуктуации в термодинамической системе. Свойства и значения флуктуаций вблизи и вдали от термодинамического равновесия.
- •22. Феномен белка в биофизике. Уникальность строения и свойств белка.
- •23.Фибриллярные белки. Мембранные белки. Глобулярные белки. Характеристика, примеры.
- •24. Элементарные взаимодействия в белках: ковалентные, координационные связи в белках.
- •25. Силы Ван-дер-Ваальса, характеристика, примеры на белковых молекулах.
- •26. Энергия Ван-дер-Ваальсова взаимодействия: взаимодействие сил отталкивания и притяжения в белках, формула Леннард-Джонса.
- •Элементарные взаимодействия в белках: водородные связи, их характеристика.
- •Элементарные взаимодействия в белках: гидрофобные взаимодействия, их характеристика.
- •29. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие.
- •Вторичная структура белка. Типы вторичной структуры, их особенности.
- •31. Третичная структура белка, характеристика. Четвертичная структура белка, характеристика, отличия от агрегатов.
- •32. Общие закономерности, наблюдаемые в структуре белков. Мотивы укладки. Термодинамические характеристики образования структур белковых молекул.
- •33. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
- •34.Денатурация белка. Термодинамическая характеристика денатурации. Этапы денатурации белка. Механизмы денатурации. Способы денатурации. Ренатурация.
- •35. Строение атома, теории Томсона, Резерфорда. Первый и второй постулаты Бора. Атомные спектры.
- •Фотофизические и фотохимические превращения биосистем. Классификация фотобиологических процессов.
- •37. Физические аспекты поглощения света молекулами вещества при протекании фотобиологических процессов. Особенности строения хроматофорных групп, типы электронных переходов.
- •38. Фотофизическая дезактивация электронно-возбужденной молекулы. Типы. Характеристика.
- •39. Люминесценция. Фосфоресценция, флуоресценция. Классификация видов люминесценции в зависимости от вида возбуждения.
- •40. Механизмы люминесценции. Возможные варианты протекания этого процесса. Правило Стокса. Энергетический выход, закон Вавилова.
- •Применение люминесценции в биологии и медицине.
- •Лазеры. Типы лазеров. Определение. Принцип действия лазера. Инверсная нацеленность. Активная среда. Системы возбуждения.
- •43. Особенности лазерного излучения.
- •Первичные механизмы и биологическое действие лазерного излучения.
- •45. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения. Фазы.
- •46.Использование лазерного излучения. Лазерная диагностика. Лазерное излучение в биологии, в терапии и хирургии.
- •47.Рентгеновское излучение. Общие понятия, история открытия. Источники рентгеновского излучения.
- •48. Тормозное рентгеновское излучение, характеристика. Спектр тормозного рентгеновского излучения.
- •49. Характеристическое рентгеновское излучение, характеристика. Спектр характеристического рентгеновского излучения. Закон Мозли.
- •50. Взаимодействие рентгеновского излучения с веществом. Закон ослабления. Физические основы использования рентгеновского излучения в биологии и медицине.
- •51. Радиоактивность. История открытия. Основной закон радиоактивного распада. Постоянная распада. Период полураспада. Активность.
- •52. Основные виды радиоактивного распада. Характеристика.
- •53.Количественные характеристики взаимодействия ионизирующего излучения с веществом (линейная тормозная способность вещества, линейная плотность ионизации, средний линейный пробег).
- •54. Биофизические основы действия ионизирующего излучения. Основные стадии. Общие закономерности биологической стадии.
- •55. Естественная и искусственная радиоактивность. Примеры.
- •Биологические эффекты доз облучения, предельные дозы.
Лазеры. Типы лазеров. Определение. Принцип действия лазера. Инверсная нацеленность. Активная среда. Системы возбуждения.
Лазер — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.
В зависимости от вида активной среды и способа ее возбуждения лазеры несколько условно можно разделить на несколько типов:
твердотельные, рабочим веществом этих лазеров служат кристаллы или стекла, активированные посторонними ионами.
жидкостные, их активной средой служат растворы органических соединений, комплексных соединений редкоземельных элементов (Nd, Eu), неорганические жидкости.
газовые, источником вынужденного излучения в газах служат возбужденные нейтральные атомы, молекулы или слабоионизованная тлеющим электрическим разрядом плазма.
полупроводниковые, активной средой лазеров служат полупроводниковые кристаллы (GaAs, InSb, PlS).
Атомы вещества, поглощая энергию, например, при нагревании вещества, переходят в возбужденное состояние. Их электроны поднимаются на верхний энергетический уровень E1; через какое-то время они вновь опускаются на основной уровень E0, отдавая энергию в виде квантов электромагнитного излучения. Частота излучения определяется разностью энергий этих двух уровней:
E1 – E0 = h, где h— Постоянная Планка, — частота излученного фотона.
В обычной среде излучение отдельных атомов происходит самопроизвольно, независимо друг от друга, в разные моменты времени и в разных направлениях. Количество атомов обычного вещества в основном состоянии больше, чем в возбужденном. Вещество, предназначенное для лазерной генерации, имеет большинство атомов в возбужденном состоянии. Такая ситуация называется инверсной населенностью. Чтобы она осуществилась, атомы вещества должны непрерывно получать энергию, а их электроны достаточно долго находиться на верхних энергетических уровнях (такие уровни называются метастабильными). С метастабильного уровня электрон, как правило, не успевает опуститься сам — его «сбрасывает» вниз пролетевший мимо фотон той же частоты. Излученный при этом — вынужденном — переходе фотон имеет ту же фазу, что и исходный. После каждого такого взаимодействия число фотонов удваивается — по веществу идет лавина вынужденного, или индуцированного, излучения.
Лазер состоит из трех основных компонентов: активная среда, в которой осуществляется инверсная населенность атомных уровней и происходит генерация, система накачки, создающая инверсную заселенность, и оптический резонатор — устройство, создающее положительную обратную связь.
Активная среда — смесь газов, паров или растворов, кристаллы и стекла сложного состава. Компоненты активной среды подобраны так, что энергетические уровни их атомов образуют квантовую систему, в которой есть хотя бы один метастабильный уровень, обеспечивающий инверсную населенность.
Система накачки создает в активной среде инверсную заселенность. Почти сразу атомы среды начинают спонтанно излучать фотоны в случайных направлениях. Фотоны, испущенные под углом к оси резонатора, порождают короткие каскады вынужденного излучения, быстро покидающего среду. Фотоны же, испущенные вдоль оси резонатора, отражаются от зеркал и многократно проходят сквозь активную среду, вызывая в ней все новые акты вынужденного излучения. Генерация начинается в тот момент, когда увеличение энергии волны за счет ее усиления при каждом проходе резонатора начнет превосходить потери, которые складываются из внутренних потерь (поглощение и рассеяние света в активной среде, зеркалах резонатора и др. элементах) и той энергии, которая поступает наружу сквозь выходное зеркало.
