- •Вопросы к экзамену по биофизике, 2017: Дата: 3 июня, суббота!
- •1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.
- •2. История становления биофизики как науки. Методы изучения в биофизике.
- •3. Термодинамические (тд) системы. Параметры состояния.
- •4. Внутренняя энергия, работа и тепло.
- •5. Обратимые и необратимые процессы.
- •6. Понятие термодинамического равновесия. Равновесные и неравновесные системы.
- •7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •8. Термодинамические функции состояния (термодинамический потенциал). Свободная энергия Гиббса. Примеры использования термодинамических представлений.
- •9. Энтальпия. Закон Гесса. Примеры использования в биологических системах.
- •Виды теплоты, теплопродукция. Удельная теплопродукция. Примеры.
- •11.Второе начало термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •12. Энтропия. Свойства энтропии. Её физический и биологический смысл с позиций термодинамики и молекулярной физики.
- •13. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.
- •Работоспособность биологических систем. Градиенты.
- •Баланс энтропии при росте и развитии организмов.
- •Сравнительная характеристика стационарного состояния и термодинамического равновесия.
- •18. Характеристики устойчивого и неустойчивого стационарного состояния системы. Диссипативная структура.
- •19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.
- •20. Общие свойства систем вблизи от термодинамического равновесия. Общие свойства систем вдали от термодинамического равновесия.
- •Флуктуации в термодинамической системе. Свойства и значения флуктуаций вблизи и вдали от термодинамического равновесия.
- •22. Феномен белка в биофизике. Уникальность строения и свойств белка.
- •23.Фибриллярные белки. Мембранные белки. Глобулярные белки. Характеристика, примеры.
- •24. Элементарные взаимодействия в белках: ковалентные, координационные связи в белках.
- •25. Силы Ван-дер-Ваальса, характеристика, примеры на белковых молекулах.
- •26. Энергия Ван-дер-Ваальсова взаимодействия: взаимодействие сил отталкивания и притяжения в белках, формула Леннард-Джонса.
- •Элементарные взаимодействия в белках: водородные связи, их характеристика.
- •Элементарные взаимодействия в белках: гидрофобные взаимодействия, их характеристика.
- •29. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие.
- •Вторичная структура белка. Типы вторичной структуры, их особенности.
- •31. Третичная структура белка, характеристика. Четвертичная структура белка, характеристика, отличия от агрегатов.
- •32. Общие закономерности, наблюдаемые в структуре белков. Мотивы укладки. Термодинамические характеристики образования структур белковых молекул.
- •33. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
- •34.Денатурация белка. Термодинамическая характеристика денатурации. Этапы денатурации белка. Механизмы денатурации. Способы денатурации. Ренатурация.
- •35. Строение атома, теории Томсона, Резерфорда. Первый и второй постулаты Бора. Атомные спектры.
- •Фотофизические и фотохимические превращения биосистем. Классификация фотобиологических процессов.
- •37. Физические аспекты поглощения света молекулами вещества при протекании фотобиологических процессов. Особенности строения хроматофорных групп, типы электронных переходов.
- •38. Фотофизическая дезактивация электронно-возбужденной молекулы. Типы. Характеристика.
- •39. Люминесценция. Фосфоресценция, флуоресценция. Классификация видов люминесценции в зависимости от вида возбуждения.
- •40. Механизмы люминесценции. Возможные варианты протекания этого процесса. Правило Стокса. Энергетический выход, закон Вавилова.
- •Применение люминесценции в биологии и медицине.
- •Лазеры. Типы лазеров. Определение. Принцип действия лазера. Инверсная нацеленность. Активная среда. Системы возбуждения.
- •43. Особенности лазерного излучения.
- •Первичные механизмы и биологическое действие лазерного излучения.
- •45. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения. Фазы.
- •46.Использование лазерного излучения. Лазерная диагностика. Лазерное излучение в биологии, в терапии и хирургии.
- •47.Рентгеновское излучение. Общие понятия, история открытия. Источники рентгеновского излучения.
- •48. Тормозное рентгеновское излучение, характеристика. Спектр тормозного рентгеновского излучения.
- •49. Характеристическое рентгеновское излучение, характеристика. Спектр характеристического рентгеновского излучения. Закон Мозли.
- •50. Взаимодействие рентгеновского излучения с веществом. Закон ослабления. Физические основы использования рентгеновского излучения в биологии и медицине.
- •51. Радиоактивность. История открытия. Основной закон радиоактивного распада. Постоянная распада. Период полураспада. Активность.
- •52. Основные виды радиоактивного распада. Характеристика.
- •53.Количественные характеристики взаимодействия ионизирующего излучения с веществом (линейная тормозная способность вещества, линейная плотность ионизации, средний линейный пробег).
- •54. Биофизические основы действия ионизирующего излучения. Основные стадии. Общие закономерности биологической стадии.
- •55. Естественная и искусственная радиоактивность. Примеры.
- •Биологические эффекты доз облучения, предельные дозы.
33. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
Фаза вещества – это состояние вещества, которому в данных условиях соответствует минимум свободной энергии. При изменении условий могут происходить переходы между фазами, изменение фазового состояния вещества. По характеру изменения свободной энергии выделяют три типа фазовых переходов.
ФП 1 рода. В процессе ФП наблюдается только начальное и конечное состояния, невозможно уловить промежуточные состояния. ФП происходит в узком диапазоне условий, зависимость свободной энергии от условий носит S-образный характер. Изменение фазы происходит по принципу "Всё или Ничего". Стабильные состояния между ФП 1 рода разделены достаточно высоким энергетическим барьером, поэтому они происходят достаточно длительное время.
ФП 2 рода. Для этого типа ФП характерно постепенное изменение фазы через многочисленные промежуточные состояния, принцип "Всё или Ничего" отсутствует. Скачок энергии в малом диапазоне условий отсутствует, поэтому ФП 2 рода происходят быстро и в более широком диапазоне условий. При достижении температуры ФП происходит скачок теплоёмкости системы, в результате дальнейший рост температуры сопровождается слабым ростом энергии.
Нефазовые переходы. Для них характерно значительное изменение упорядоченности системы без изменения её агрегатного состояния и размерности.
В процессах денатурации и ренатурации белка разные стадии представляют собой фазовые переходы разного рода. Для малых белков процесс можно считать одностадийным. Этот процесс происходит как ФП 1 рода. Для крупных белков этот процесс многостадийный, и разные его стадии происходят как ФП разного рода. Ранние этапы самосборки различаются в зависимости от типа вторичной структуры. Образование α-спирали происходит как нефазовый переход, так как оба фазовых состояния одномерны и не происходит изменения границы фаз. Образование β-листов происходит как ФП 1 рода, площадь контакта цепи с листом зависит от размера контактирующих элементов. Процесс образования β-структуры происходит значительно дольше.
Процесс образования и разрушения нативной структуры происходит как ФП 1 рода. В процессе этого перехода происходит изменение энтропии системы, компенсированное изменением свободной энергии. Это обеспечивается наличием большого числа слабых связей с низкой энергией.
К ФП 2 рода могут относиться процессы образования и разрушения доменных структур, которые часто сопровождаются ростом теплоёмкости системы.
34.Денатурация белка. Термодинамическая характеристика денатурации. Этапы денатурации белка. Механизмы денатурации. Способы денатурации. Ренатурация.
Денатурация – потеря белком своей активности, нативности, рабочей структуры.
В термодинамическом плане денатурация сопровождается увеличением энтропии и уменьшением свободной энергии белка. Существует два механизма денатурации для малых и крупных белковых молекул.
1.
2.
В первом случае процесс денатурации представляет собой ФП 1 рода, что обеспечивается наличием большого числа слабых связей с глобуле.
Во втором случае на первом этапе плавления глобулы происходит нарушение упорядоченности боковых групп, но сохраняется общая пространственная структура. Этот переход происходит как ФП 1 рода. Дальнейшие этапы денатурации зависят от доменной и вторичной структуры и могут происходить как ФП любого рода.
Расплавленная глобула является устойчивым интермедиатом разворачивания белка и характеризуется минимумом свободной энергии.
Самые распространенные способы денатурации: температурная, химическая, лучевая (механизмы – это то, что лежит в основе каждого способа денатурации).
Температурная – 2 типа:
1.Тепловая – при увеличении температуры. В основе лежит увеличение скорости молекулярных движений, приводящих к разрыву связей (ковалентных, дисульфидных, координационных, реже пептидных).
2.Холодовая – при понижении температуры. Причина денатурации – снижении гидрофобности.
Химическая – оттягивается часть водородных связей при погружении в раствор, следовательно белок становится менее стабилен (т.к. вода тоже является конкурентной).
Лучевая – обусловлена поглощением атомами белка энергии, следствие – разрыв связей.
Установлено, что денатурация (Д.) малых
белков представляет собой S-образную
кривую.
Характеристики молекулы меняются от тех, что характерны для нативного белка до тех, что характерны для белка денатурированного.
Узость этих S-образных кривых свидетельствует о кооперативности перехода (о том, что он охватывает много аминокислотных остатков).
Переход «все или ничего»:
Калориметрическое исследование тепловой денатурации лизоцима при разных рН. Положение пика удельной теплоемкости (Ср) определяет температуру T0, его ширина — ширину перехода дельта T, площадь под пиком — поглощенное при плавлении тепло дельта Н в расчете на грамм белка. ( Т.е. Энтальпия и температура денатурации белка зависят от рН среды, следовательно, существенна роль электростатических эффектов).
Например, миоглобин
при рН 12,2 - Т плавл. =50°С и ΔН =300 кДж/моль;
при рН 10,7 - Т плавл. = 78°С и ΔН=710 кДж/моль.
Сочетание факторов существенно влияет на механизм денатурации.
Денатурация кислотой или щелочью определяется:
1.Свободная энергия полиэлектролита обратно пропорциональна квадрату суммы заряда поверхности. Стабильность глобулы уменьшается в обе сторон от изоэлектрической точки (ИЭТ – это когда число разноименных зарядов в молекуле одинаково, суммарный заряд = 0).
2.Изменение pH может приводить к ионизации групп, погребенных в неполярном ядре глобулы (гидрофобном ядре). Эти группы притягивают гидратные оболочки, а следовательно происходит сдвиг равновесия к расплавленной форме.
Увеличенная теплоемкость денатурированного белка – следствие увеличения поверхности контакта его гидрофобных боковых групп с водой при частичном или полном разворачивании белка.
Принцип «все или ничего» - микроскопический аналог ФП 1-ого рода (ФП 1-ого рода в чистом виде наблюдается в маленьком белке или отдельных доменах крупного белка). Денатурация крупного белка – есть сумма денатурации доменов.
Как плавится белок: целиком или по частям?
Калориметрическая теплота – это кол-во тепла, поглощаемо одной молекулой белка в процессе плавления.
Эффективная теплота перехода – это кол-во тепла, поглощенного одной независимой «единицей плавления».
Если эффективная теплота перехода МЕНЬШЕ калориметрической теплоты перехода, значит единица плавления МЕНЬШЕ, чем сама молекула белка. Такая молекула плавится по частям.
Если эффективная теплота перехода БОЛЬШЕ калориметрической теплоты перехода, единица плавления БОЛЬШЕ этой молекулы. Плавится агрегат молекул.
Если эти 2 теплоты перехода равны, значит молекула плавится как единое целое, единица плавления = этой молекуле. (критерий Вант-Гоффа – для перехода «все или ничего»).
Детьта Т определяется шириной зоны резкого изменения любого экспериментального параметра, определяющего вероятность расплавленного состояния.
ΔE = ΔH/N «все или ничего», где ΔH – кол-во тепла, поглощаемое всеми имеющимися молекулами, N – кол-во всех молекул белка, ΔH/N – калориметрическая теплота.
ΔE < ΔH/N единица плавления меньше, чем весь белок
ΔE > ΔH/N единица плавления больше белка (сразу несколько молекул плавится).
В процессах денатурации и ренатурации белка разные стадии представляют собой фазовые переходы разного рода. Для малых белков процесс можно считать одностадийным. Этот процесс происходит как ФП 1 рода.
Для крупных белков этот процесс многостадийный, и разные его стадии происходят как ФП разного рода.
Денатурация может быть:
Обратимой, если возможно восстановление свойственной белку структуры. Такой денатурации подвергаются, например, рецепторные белки мембраны.
Необратимой, если восстановление пространственной конфигурации белка невозможно. Обычно это происходит при разрыве большого количества связей, например, при варке яиц.
Если белок подвергся обратимой денатурации, то при восстановлении нормальных условий среды он способен полностью восстановить свою структуру и, соответственно, свои свойства и функции. Процесс восстановления структуры белка после денатурации называется ренатурацией.
