- •Вопросы к экзамену по биофизике, 2017: Дата: 3 июня, суббота!
- •1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.
- •2. История становления биофизики как науки. Методы изучения в биофизике.
- •3. Термодинамические (тд) системы. Параметры состояния.
- •4. Внутренняя энергия, работа и тепло.
- •5. Обратимые и необратимые процессы.
- •6. Понятие термодинамического равновесия. Равновесные и неравновесные системы.
- •7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •8. Термодинамические функции состояния (термодинамический потенциал). Свободная энергия Гиббса. Примеры использования термодинамических представлений.
- •9. Энтальпия. Закон Гесса. Примеры использования в биологических системах.
- •Виды теплоты, теплопродукция. Удельная теплопродукция. Примеры.
- •11.Второе начало термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •12. Энтропия. Свойства энтропии. Её физический и биологический смысл с позиций термодинамики и молекулярной физики.
- •13. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.
- •Работоспособность биологических систем. Градиенты.
- •Баланс энтропии при росте и развитии организмов.
- •Сравнительная характеристика стационарного состояния и термодинамического равновесия.
- •18. Характеристики устойчивого и неустойчивого стационарного состояния системы. Диссипативная структура.
- •19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.
- •20. Общие свойства систем вблизи от термодинамического равновесия. Общие свойства систем вдали от термодинамического равновесия.
- •Флуктуации в термодинамической системе. Свойства и значения флуктуаций вблизи и вдали от термодинамического равновесия.
- •22. Феномен белка в биофизике. Уникальность строения и свойств белка.
- •23.Фибриллярные белки. Мембранные белки. Глобулярные белки. Характеристика, примеры.
- •24. Элементарные взаимодействия в белках: ковалентные, координационные связи в белках.
- •25. Силы Ван-дер-Ваальса, характеристика, примеры на белковых молекулах.
- •26. Энергия Ван-дер-Ваальсова взаимодействия: взаимодействие сил отталкивания и притяжения в белках, формула Леннард-Джонса.
- •Элементарные взаимодействия в белках: водородные связи, их характеристика.
- •Элементарные взаимодействия в белках: гидрофобные взаимодействия, их характеристика.
- •29. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие.
- •Вторичная структура белка. Типы вторичной структуры, их особенности.
- •31. Третичная структура белка, характеристика. Четвертичная структура белка, характеристика, отличия от агрегатов.
- •32. Общие закономерности, наблюдаемые в структуре белков. Мотивы укладки. Термодинамические характеристики образования структур белковых молекул.
- •33. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
- •34.Денатурация белка. Термодинамическая характеристика денатурации. Этапы денатурации белка. Механизмы денатурации. Способы денатурации. Ренатурация.
- •35. Строение атома, теории Томсона, Резерфорда. Первый и второй постулаты Бора. Атомные спектры.
- •Фотофизические и фотохимические превращения биосистем. Классификация фотобиологических процессов.
- •37. Физические аспекты поглощения света молекулами вещества при протекании фотобиологических процессов. Особенности строения хроматофорных групп, типы электронных переходов.
- •38. Фотофизическая дезактивация электронно-возбужденной молекулы. Типы. Характеристика.
- •39. Люминесценция. Фосфоресценция, флуоресценция. Классификация видов люминесценции в зависимости от вида возбуждения.
- •40. Механизмы люминесценции. Возможные варианты протекания этого процесса. Правило Стокса. Энергетический выход, закон Вавилова.
- •Применение люминесценции в биологии и медицине.
- •Лазеры. Типы лазеров. Определение. Принцип действия лазера. Инверсная нацеленность. Активная среда. Системы возбуждения.
- •43. Особенности лазерного излучения.
- •Первичные механизмы и биологическое действие лазерного излучения.
- •45. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения. Фазы.
- •46.Использование лазерного излучения. Лазерная диагностика. Лазерное излучение в биологии, в терапии и хирургии.
- •47.Рентгеновское излучение. Общие понятия, история открытия. Источники рентгеновского излучения.
- •48. Тормозное рентгеновское излучение, характеристика. Спектр тормозного рентгеновского излучения.
- •49. Характеристическое рентгеновское излучение, характеристика. Спектр характеристического рентгеновского излучения. Закон Мозли.
- •50. Взаимодействие рентгеновского излучения с веществом. Закон ослабления. Физические основы использования рентгеновского излучения в биологии и медицине.
- •51. Радиоактивность. История открытия. Основной закон радиоактивного распада. Постоянная распада. Период полураспада. Активность.
- •52. Основные виды радиоактивного распада. Характеристика.
- •53.Количественные характеристики взаимодействия ионизирующего излучения с веществом (линейная тормозная способность вещества, линейная плотность ионизации, средний линейный пробег).
- •54. Биофизические основы действия ионизирующего излучения. Основные стадии. Общие закономерности биологической стадии.
- •55. Естественная и искусственная радиоактивность. Примеры.
- •Биологические эффекты доз облучения, предельные дозы.
23.Фибриллярные белки. Мембранные белки. Глобулярные белки. Характеристика, примеры.
Фибриллярные белки.
Полипептидные цепи расположены параллельно друг другу и образуют длинные волокна (фибриллы) или слой.
Механическое свойство: Способны к сжатию и распрямлению. (Выполняют структурные функции)
Нерастворимы в воде.
Примерами являются : α-структурные фибриллярные белки (кератины, тропомиозин, белки промежуточных филаментов)
β-структурные фибриллярные белки (фиброин шёлка), коллаген — белок сухожилий и хрящей , и эластин.
Мембранные белки.
По характеру взаимодействия с мембраной белки делятся на:
-монотопические белки взаимодействуют с поверхностью мембраны (моно – одним из слоев липидов);
-битопические пронизывают мембрану насквозь (би – двумя слоями липидов);
-политопические пронизывают мембрану несколько раз (поли- многократное взаимодействие с липидами).
(первые относятся к периферическим белкам, а вторые и третьи к интегральным)
Примеры: белки мембраны клетки и органелл (рецептор адреналина; сукцинатдегидрогеназа; цитохром b5).
Глобулярные белки.
Полипептидные цепи плотно скрученные в шаровидные или овальные структуры — глобулы.
Они могут быть растворимыми в воде, растворах щелочей, солей и кислот.
Функции: Выполняют преимущественно динамическую функцию.
Особенности укладок белковых глобул:
Каждый слой сложен либо только из α-спиралей, либо только из β-тяжей, но не из α -спиралей и β-тяжей одновременно!
Детальная последовательность действий не играет решающей роли при сворачивании белка.
Примеры: Овальбумин. Из этого белка на 60 процентов состоит яичный белок.
Лактальбумин - основная составляющая молока.
Гемоглобин - содержится в эритроцитах. Это белок, который способен связываться с кислородом и транспортировать его.
Миоглобин – это белок, похожий на гемоглобин. Он выполняет ту же функцию — перенос кислорода. Такой белок содержится в мышцах (поперечнополосатых и сердечной).
24. Элементарные взаимодействия в белках: ковалентные, координационные связи в белках.
Белки – это высокомолекулярные орг-е в-ва, состоящие из альфа-аминокислот, соединенных в цепочку пептидной связью.
Ковалентные пептидные связи. Первичная структура представляет собой совокупность ковалентных (пептидных) связей. Они образуют энергетический остов молекулы белка и действуют вдоль пептидной цепи. Ковалентные связи характеризуются наибольшей электронной плотностью между двумя связывающими атомами, поэтому энергия связи велика. Пептидная связь образуется за счет СООН группы одной ам.к-ты и NH2 группы соседней ам.к-ты. Жесткость этих связей и плоская форма пептидной группировки образуется за счет sp2гибридизации.
Ковалентные –s – s – связи: Они обусловливают изменение направления полипептидной цепи, скрепляют ее отдельные участки. Эти связи возникают между двумя молекулами цистеина, находящимися на различных участках цепи, за счет отрыва водорода от сульфгидрильных групп. Хотя под действием дисульфидных связей и уменьшается степень упорядоченности вторичной структуры, наличие этих связей укрепляет структуру оставшихся α-спиралей и β-складок и делает ее более стабильной к воздействию таких физико-химических факторов среды, как температура и рН.
Если цистеиновые фрагменты содержатся в различных полипептидных цепях, образующийся цистеиновый мостик связывает эти цепи.
Координационные связи (донорно-акцепторный мех-м) образуются м/у атомамиN, O, S–белков. Могут уч-ть атомы О, принадлеж. Н2О. С 2,3 валентными металлами обр-сякоорд. связь. Fe, Zn, Ca, Co, Mg. У них есть свободные орбитали. У N, O,S(доноры) есть свободные электронные пары. Образуется связь ничем не отличающаяся от ковалентной связи. В чистом виде есть доноры и акцепторы. Атом Ме: связывается одновременно с несколькими атомами, при этом крупные ат. доноры со всех сторон «прилепляются» к Ме. Чаще всего 6 атомов координируется вокруг Ме. Роль этих связей связана с работой белков.
