- •Вопросы к экзамену по биофизике, 2017: Дата: 3 июня, суббота!
- •1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.
- •2. История становления биофизики как науки. Методы изучения в биофизике.
- •3. Термодинамические (тд) системы. Параметры состояния.
- •4. Внутренняя энергия, работа и тепло.
- •5. Обратимые и необратимые процессы.
- •6. Понятие термодинамического равновесия. Равновесные и неравновесные системы.
- •7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •8. Термодинамические функции состояния (термодинамический потенциал). Свободная энергия Гиббса. Примеры использования термодинамических представлений.
- •9. Энтальпия. Закон Гесса. Примеры использования в биологических системах.
- •Виды теплоты, теплопродукция. Удельная теплопродукция. Примеры.
- •11.Второе начало термодинамики. История открытия. Формулировка, физический и биологический смысл.
- •12. Энтропия. Свойства энтропии. Её физический и биологический смысл с позиций термодинамики и молекулярной физики.
- •13. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.
- •Работоспособность биологических систем. Градиенты.
- •Баланс энтропии при росте и развитии организмов.
- •Сравнительная характеристика стационарного состояния и термодинамического равновесия.
- •18. Характеристики устойчивого и неустойчивого стационарного состояния системы. Диссипативная структура.
- •19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.
- •20. Общие свойства систем вблизи от термодинамического равновесия. Общие свойства систем вдали от термодинамического равновесия.
- •Флуктуации в термодинамической системе. Свойства и значения флуктуаций вблизи и вдали от термодинамического равновесия.
- •22. Феномен белка в биофизике. Уникальность строения и свойств белка.
- •23.Фибриллярные белки. Мембранные белки. Глобулярные белки. Характеристика, примеры.
- •24. Элементарные взаимодействия в белках: ковалентные, координационные связи в белках.
- •25. Силы Ван-дер-Ваальса, характеристика, примеры на белковых молекулах.
- •26. Энергия Ван-дер-Ваальсова взаимодействия: взаимодействие сил отталкивания и притяжения в белках, формула Леннард-Джонса.
- •Элементарные взаимодействия в белках: водородные связи, их характеристика.
- •Элементарные взаимодействия в белках: гидрофобные взаимодействия, их характеристика.
- •29. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие.
- •Вторичная структура белка. Типы вторичной структуры, их особенности.
- •31. Третичная структура белка, характеристика. Четвертичная структура белка, характеристика, отличия от агрегатов.
- •32. Общие закономерности, наблюдаемые в структуре белков. Мотивы укладки. Термодинамические характеристики образования структур белковых молекул.
- •33. Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.
- •34.Денатурация белка. Термодинамическая характеристика денатурации. Этапы денатурации белка. Механизмы денатурации. Способы денатурации. Ренатурация.
- •35. Строение атома, теории Томсона, Резерфорда. Первый и второй постулаты Бора. Атомные спектры.
- •Фотофизические и фотохимические превращения биосистем. Классификация фотобиологических процессов.
- •37. Физические аспекты поглощения света молекулами вещества при протекании фотобиологических процессов. Особенности строения хроматофорных групп, типы электронных переходов.
- •38. Фотофизическая дезактивация электронно-возбужденной молекулы. Типы. Характеристика.
- •39. Люминесценция. Фосфоресценция, флуоресценция. Классификация видов люминесценции в зависимости от вида возбуждения.
- •40. Механизмы люминесценции. Возможные варианты протекания этого процесса. Правило Стокса. Энергетический выход, закон Вавилова.
- •Применение люминесценции в биологии и медицине.
- •Лазеры. Типы лазеров. Определение. Принцип действия лазера. Инверсная нацеленность. Активная среда. Системы возбуждения.
- •43. Особенности лазерного излучения.
- •Первичные механизмы и биологическое действие лазерного излучения.
- •45. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения. Фазы.
- •46.Использование лазерного излучения. Лазерная диагностика. Лазерное излучение в биологии, в терапии и хирургии.
- •47.Рентгеновское излучение. Общие понятия, история открытия. Источники рентгеновского излучения.
- •48. Тормозное рентгеновское излучение, характеристика. Спектр тормозного рентгеновского излучения.
- •49. Характеристическое рентгеновское излучение, характеристика. Спектр характеристического рентгеновского излучения. Закон Мозли.
- •50. Взаимодействие рентгеновского излучения с веществом. Закон ослабления. Физические основы использования рентгеновского излучения в биологии и медицине.
- •51. Радиоактивность. История открытия. Основной закон радиоактивного распада. Постоянная распада. Период полураспада. Активность.
- •52. Основные виды радиоактивного распада. Характеристика.
- •53.Количественные характеристики взаимодействия ионизирующего излучения с веществом (линейная тормозная способность вещества, линейная плотность ионизации, средний линейный пробег).
- •54. Биофизические основы действия ионизирующего излучения. Основные стадии. Общие закономерности биологической стадии.
- •55. Естественная и искусственная радиоактивность. Примеры.
- •Биологические эффекты доз облучения, предельные дозы.
Баланс энтропии при росте и развитии организмов.
Для биологии и медицины особый интерес представляют открытые неравновесные системы, находящиеся в стационаром состоянии (взрослый организм). Для таких систем характерно постоянство энтропии ΔS = 0, хотя в системе протекают необратимые процессы (теплоотдача), которые сопровождаются увеличением энтропии. Баланс энтропии живой системы необходимо рассматривать в виде:
ΔS = ΔSi + ΔSe
где ΔSi – изменение энтропии, обусловленное необратимыми процессами в системе; ΔSе – изменение энтропии, вызванное взаимодействием системы с внешними телами. Поскольку ΔS = 0 и ΔSi > 0, то ΔSe < 0, то есть энтропия веществ поступающих в систему, меньше энтропии продуктов, выходящих из системы.
В организме постоянно разрушаются сложные молекулы, что должно приводить к уменьшению его упорядоченности, однако благодаря поступлению свободной энергии извне (химическая энергия питательных веществ) организм непрерывно восстанавливает нарушаемый порядок. Восстанавливаются не те же молекулы биополимеров, а создаются новые, идентичные разрушенным. Характерный для жизни порядок может поддерживаться только за счет непрерывной компенсации внутренней продукции энтропии внешним потоком отрицательной энтропии. Используя его, биологическая система способна обновляться и этим тормозить переход в состояние термодинамического равновесия.
Для стационарных состояний сформулирован принцип минимума производства энтропии (И. Пригожин): в стационарном состоянии системы скорость возникновения энтропии вследствие необратимых процессов имеет минимальное значение при данных внешних условиях.
Таким образом, можно утверждать, что поддержание гомеостаза требует от живых организмов минимального потребления энергии.
Согласно теореме Пригожина система за счет внутренних необратимых процессов не способна выйти из стационарного состояния. Если за счет небольших флуктуаций система отклоняется от стационарного состояния, то стремление внутренних процессов уменьшить dSi/dt вернет систему к исходному уровню (изменение, в определенном диапазоне, уровня глюкозы в крови, температуры и других параметров не приводят к необратимым процессам). В общем виде это положение сформулировано в принципе Л. Ле-Шателье–если на систему, находящуюся в состоянии равновесия оказывается внешнее воздействие, она стремится самопроизвольно вернуться в исходное состояние за счет изменения параметров в направлении противоположном внешнему возмущению.
О скорости продуцирования энтропии можно судить по выделению потока тепла, который сопровождает необратимые процессы в системе. Изменение скорости теплопродукции dSi/dt, отнесенная к единице массы на разных объектах показали, что этот параметр уменьшается, начиная с первых стадий развития организма (рис. 2). То есть в процессе роста и развития организма скорость продуцирования энтропии непрерывно снижается и достигает минимальных значений в конечном стационарном состоянии. Старение сопровождается повышением энтропии, которая уже не компенсируется ее оттоком в окружающую среду.
dS = dSi + dSe> 0;
Жизнь – это постоянная борьба биосистемы против тенденции к возрастанию энтропии.
