- •Скважинные насосные установки для добычи нефти
- •Введение
- •Распределение добычи нефти по способам эксплуатации скважин
- •Глава I. Установки скважинных насосов с электроприводом
- •1.1. Скважинные центробежные насосы
- •1.1.1. Осевые опоры и радиальные подшипники вала насоса
- •Технические характеристики насосов
- •Основные требования технических условий на насосы
- •Параметры насосов тала эцна, эцнак ту 3631-025-21945400-97
- •Параметры насосов типа эцнм 5-20 ту 3665-001-00217780-97
- •Технические характеристики насосов типа 1bнhп 5-25
- •Технологические характеристики насосов типа 2вннп 5-80
- •Технические характеристики насосов типа 2вннп 5-125
- •1.1.2. Погружные центробежные насосы зарубежных фирм
- •Параметры насосов фирмы reda
- •Параметры насосов фирмы Centrilift
- •Параметры насосов фирмы еsр
- •Параметры погружных центробежных насосов для добычи нефти фирмы odi
- •Параметры насосов типа а и е фирмы Temtex
- •1.2. Газосепараторы центробежных насосов для добычи нефти
- •Существующие конструкции и принцип действия газосепараторов и диспергаторов
- •Условия эксплуатации
- •Газосепараторы фирмы Centrilift
- •Г азосепараторы и диспергаторы, выпускаемые фирмой reda
- •Газосепараторы китайского производства
- •Газосепараторы для эцн
- •1.3. Погружные электродвигатели и их гидрозащита
- •Размеры труб для корпусов эцн и пэд
- •Секционные двигатели
- •Параметры погружных электродвигателей
- •Двигатели фирмы reda
- •Электродвигатели серии 375, 50 Гц, односекционные, диаметр — 95,3 мм
- •Электродвигатели серии 456, диаметр 115,8 мм
- •Модульные протекторы серии 387/456. Минимальный размер обсадной трубы 5.5" (139,7 мм), наружный диаметр 98,3 мм
- •Двигатели фирмы Centrilift
- •Электродвигатели модели dme серии 375
- •Наружный диаметр 3,75 дюйма (95,3 мм)
- •Наружный диаметр 3,75 дюйма (95,3 мм)
- •Наружный диаметр 3,75 дюйма (95,3 мм)
- •Электродвигатели fme серии 450 односекционные
- •Наружный диаметр 4,50 дюйма (114,3 мм)
- •Наружный диаметр 4,50 дюйма (114,3 мм)
- •Секция гидрозащиты серии 400
- •Наружный диаметр 4,00 дюйма (101,6 мм)
- •Секция гидрозащиты серии 400
- •Наружный диаметр 4,00 дюйма (101,6 мм)
- •Электродвигатели фирмы Temtex
- •Двигатели фирмы Temtex
- •1.4. Система токоподвода установоък эцн
- •1.4.1. Устройства управления и защиты
- •Комплектное устройство шгс5805-49азу1 (ту уз.10-00216852-00-95)
- •Технические характеристики шгс 5810
- •Комплектные трансформаторные подстанции серии ктппн (ту 16-530.292-83)
- •Параметры ктппнкс
- •Станции управления типа ирби
- •1.4.2. Комплектные устройства зарубежных фирм Комплектные устройства фирмы reda
- •Технические характеристики комплектных устройств фирмы reda
- •Комплектные устройства фирмы Cenlrilift
- •Техничеcкие характеристик и комплектных устройств фирмы Centrilift
- •Комплектные устройства фирмы esp
- •Технические характеристики комплектных устройств esp
- •1.4.3. Оборудование для регулировки частоты вращения валов погружных двигателей
- •Оборудование для регулировки частоты вращения валов эцн фирмы reda
- •Массогабаритная характеристика vsd
- •Технические характеристика speedstar
- •Оборудование для регулировки частоты вращения валов эцн фирмы Centrilift
- •Технические характеристики «Электроспид ics»
- •Оборудование для регулировки частоты вращения фирмы esp
- •Регуляторы скорости фирмы esp
- •1.4.4. Оборудование для диагностики уэцн
- •Система термоманометрическая скад-2
- •Габаритные размеры и масса составных частей ист-1
- •Оборудование для диагностики состояния уэцн зарубежных фирм
- •Скважинные приборы замера давления и температуры (пздт) фирмы reda
- •Применимость комплекса пздт в составе уэцн фирмы rеda
- •Характеристики моделей скважинных датчиков фирмы reda
- •Скважинные приборы замера давления и температуры фирмы Centrilift
- •Технические характеристики пздт фирмы Centrilift
- •Скважинная система мониторинга фирмы phoenix petroleum services Ltd (Шотландия)
- •Технические данные системы трай-сенсор
- •1.4.5. Трансформаторы для уэцн
- •Устройство трансформатора
- •Трансформаторы фирмы reda
- •Трансформаторы фирмы Centrilift
- •Массогабаритные характеристики трансформаторов фирмы Centrilift
- •Технические характеристики трансформаторов фирмы Centrilift для комплектации устройств регулирования скорости вращения двигателей
- •1.4.6. Кабельные линии установок эцн
- •Российские кабельные линии
- •Кабели марок кпбк, кпбп и кпобп
- •Кабели марок кппбк и кппбп
- •Кабели марок кпобпт, кпбпт и кппбпт
- •Кабели марок кпбт, кпбпт, кэпбт и кэпбпт
- •Удлинитель с муфтой
- •Кабели-удлинители марок кпбпт, кпобпт, кппбпт, кпбп, кэпбпт и кппбп
- •Сростка кабелей
- •Размеры сросток кабельных линий
- •Контрольные испытания кабельных линий
- •Упаковка
- •Барабаны для намотки кабеля
- •Кабельные линии фирмы reda
- •Кабели фирмы reda
- •Размеры жил кабелей фирмы reda
- •Основной кабель Кабели Redalene
- •Кабели Redahot
- •Кабели Redablack
- •Кабели Redalead
- •Удлинитель с муфтой Кабели-удлинители Motorlead
- •Муфта кабельного ввода
- •Сростка кабелей
- •Контрольные испытания кабельных линий
- •Упаковка
- •Основные параметры барабанов для намотки кабельных линий фирмы reda
- •Кабели фирмы Centrilift
- •Кабели Centrilift cpn
- •Кабели Centrilift ctn
- •Кабель Centrilift стт
- •Кабели Centrilift cee
- •Кабель Centrilift cel
- •Кабель-удлинитель Centrilift kt3
- •Кабель-удлинитель Centrilift kht
- •Кабели фирмы Phillips Cables (Канада) Кабели Devilene r (круглый) и Devilene f (плоский)
- •Кабель Deviline
- •Кабель Deviline 400
- •Кабель Devilead
- •Кабели предприятия zts Кабели эпоп
- •Кабель-удлинитель кэпоп
- •Кабель ппнп и эпнп
- •Кабель эпэпп
- •Максимальные токовые нагрузки для кабелей zts
- •Кабели Шеньянского и Тяньзинского кабельных заводов (кнр)
- •Кабельная продукция фирмы Kerite (Шотландия)
- •1.4.6.1. Выбор конструкций кабелей для кабельных линий уэцн
- •Рекомендации по выбору конструкций кабелей для уэцн
- •Расчет падения напряжения в кабельной линии
- •1.4.6.2. Технологическое и вспомогательное оборудование для эксплуатации кабельных линий Приспособления для крепления и защиты кабеля
- •Пояса для крепления кабеля российского производства
- •Нагрузки, воспринимаемые протекторами Lasalle
- •1.4.6.3. Приборы и устройства контроля состояния изоляции кабельных линий и кабелей установок уэцн Устройство нки-1
- •Технические характеристики устройства нки-1
- •Технические характеристики устройства омпик-1
- •1.5. Оборудование устья скважины и вспомогательное оборудование для эксплуатации уэцн
- •1.5.1. Оборудование устья скважины для эксплуатации уэцн
- •Технические характеристики ауэ и оуэн
- •Технические характеристики афкэ и афк1э
- •1.5.2. Узлы вывода кабеля через устьевую арматуру скважины
- •Геометрические характеристики оборудования устья для уэцн
- •1.5.3. Пункты подключения кабельных линий
- •Габаритные размеры клеммных кабельных коробов фирмы Centrilift
- •1.5.4. Приспособления для подвески и направления кабеля при спуско-подъемных операциях
- •Характеристики устройств для спуска кабельной линии
- •1.5.5. Установки для намотки и размотки кабелей (кабельных линий)
- •Технические характеристики установки унркт-2м
- •Технические характеристики установки для намотки кабеля
- •Технические характеристики самоходной моталки
- •Установки для намотки и размотки кабелей ведущих фирм мира
- •Основные технические характеристики агрегатов-кабеленаматывателей фирмы Lasalle
- •1.5.6. Оборудование для монтажа и заправки маслом узлов уэцн на устье скважин
- •1.6. Основные направления усовершенствования установок погружных центробежных насосов
- •Основные технические данные и характеристики параметрических двигателей рппэд -я
- •Основные характеристики некоторых представителей параметрических двигателей прэд
- •Технические характеристики «цунар-100»
- •1.7. Конструктивные особенности деталей установок центробежных насосов и материалы для их изготовления
- •Материалы основных деталей насосов типа эцн
- •Химический состав и механические свойства материалов рабочих органов насосов типа эцн
- •Требования к корпусам насосов
- •Технические требования к валам насосов
- •Величины зазоров между обоймой направляющего аппарата и расточкой корпуса
- •Материалы основных деталей газосепараторов типа мнг и мнгк по ту 26-06-1416-84
- •Материалы основных деталей газосепараторов тапа мн-гсл по ту 313-019-92
- •Сравнительная характеристика электротехнических сталей с термостойким электроизоляционным покрытием
- •Варианты конструктивного исполнения насосов 2 лэцн5
- •1.8 Подбор оборудования и выбор узлов установки эцн по условиям добычи нефти из скважины
- •1.8.1. Основные положения методики подбора уэцн к нефтяной скважине
- •1.8.2. Алгоритм «ручного» подбора уэцн к скважине
- •Проверка параметров кабеля и нкт
- •Проверка диаметрального габарита погружного оборудования
- •Проверка параметров трансформатора и станции управления
- •1.8.3. Алгоритм «машинного» подбора уэцн к скважине
- •Общие сведения о программах подбора оборудования
- •1.8.4. Сравнение экономических показателей вариантов установки эцн
- •1.9. Обслуживание и ремонт установок погружных центробежных насосов
- •Технологический процесс разборки и сборки скважинного центробежного электронасоса
- •Технологический процесс разборки пэд45-117ав5
- •Технические характеристики верстака
- •Технические характеристики установки для мойки
- •1.10. Охрана труда при эксплуатации установок скважинных центробежных насосов
- •1.11. Установки электроприводных винтовых насосов для добычи нефти
- •1.11.1. Принцип действия винтовых насосов
- •1.11.2. Рабочие органы и конструкции винтовых насосов
- •Основные физико-механические показатели эластомера
- •1.11.3. Влияние зазора и натяга в рабочих органах винтового насоса на его характеристики
- •Риг. 1.175. Схема действия сил в насосе
- •1.11.4. Рабочие характеристики винтовых насосов
- •Технические характеристики установок
- •Технические характеристики насосов
- •1.11.5. Погружные электродвигатели для винтовых насосов
- •1.11.6. Установки погружных винтовых насосов зарубежного производства
- •1.12. Установки электроприводных диафрагменных насосов для добычи нефти
- •В насосах используются различные конструкции диафрагм.
- •Число составных частей при варианте поставки
- •Основные показатели уэдн 5
- •Глава II. Штанговые скважинные насосные установки
- •2.1. Штанговая скважинная насосная установка. Области применения
- •2.1.1. Классификация скважинных штанговых насосных установок
- •2.2. Оборудование скважынных штанговых насосных установок для добычи нефти
- •2.2.1. Механические приводы скважинных штанговых насосных установок. Классификация, области применения Общая классификация приводов штангового скважинного насоса
- •Общая классификация индивидуальных приводов штанговых насосов
- •Индивидуальные механические приводы
- •2.2.1.1. Балансирные станки-качалки
- •Станки-качалки по гост 5866-76
- •Основные параметры станков-качалок гост 5866-56
- •Основные параметры станков-качалок гост 5866-66
- •Основные параметры станков-качалок по гост 5866-76
- •Ряд станков-качалок, выпускаемых румынским заводом «Вулкан» (г. Бухарест)
- •Технические характеристики станков-качалок типа скд по ост 26-16-08-87
- •Основные параметры станков-качалок
- •Технические характеристики редукторов
- •Технические характеристики станков-качалок по
- •Технические характеристики станков- качалок, выпускаемых оао «Редуктор» по ост 26-16-08-87
- •Технические характеристики станка-качалки конструкции АзИнмаш
- •Технические характеристики станков-качалок конструкции спктб «Нефтегазмаш», г. Уфа
- •Станки-качалки по ост 26-16-08-87
- •Тихоходные станки-качалки
- •Технические характеристики
- •Технические характеристики cm-456d-305-120
- •2.2.1.2. Станки-качалки с фигурным балансиром
- •2.2.1.3. Безбалансирные станки-качалки
- •2.2.2. Редукторы механических приводов скважинных штанговых насосных установок
- •2.2.3. Гидравлические и пневматические приводы скважинных штанговых насосных установок
- •2.2.4. Конструктивные особенности длинноходовых скважинных насосных установок
- •Технические характеристики установки
- •Технические характеристики
- •Технические характеристики установки
- •Технические характеристики установки
- •2.2.5. Оборудование устья скважины при эксплуатации сшну
- •Штанговращатель.
- •Штоки сальниковые устьевые шсу
- •Технические характеристики подвески устьевого штока
- •Технические характеристики устьевых сальников
- •Технические характеристики устьевого оборудования
- •2.2.6. Силы, действующие в точке подвеса штанг
- •2.2.7. Уравновешивание балансирных станков-качалок
- •2.2.7.1. Определение усилий в шатуне при различных способах уравновешивания
- •2.2.7.2. Определение тангенциальных усилий на пальце кривошипа
- •2.2.8. Кинематика приводов скважинных штанговых насосных установок
- •2.2.8.1. Кинематическая зависимость между длиной хода точки подвеса штанг и размерами балансирного привода
- •2.2.8.2. Выбор рациональных значений отношений длин звеньев
- •2.2.8.3. Влияние взаимного расположения узлов балансирного привода на его габариты и вес
- •Расположение двигателя относительно редуктора
- •Относительное расположение опоры балансира и опоры траверсы
- •2.70. Расположение опоры балансира и опоры траверсы под балансиром
- •Размещение шарнирного четырехзвенника между опорой балансира и точкой подвеса штанг
- •Расположение редуктора относительно рамы станка-качалки
- •2.2.9. Методика расчета и подбора штанговых скважинных насосных установок
- •2.2.10. Исследование скважин. Классификация неисправностей в работе сшну. Динамометрирование
- •Влияние неисправностей на работу сшну
- •Классификация методов диагностики
- •Расчетные величины
- •Диагноз
- •2.2.11. Скважинные штанговые насосы-основные виды и области применения
- •Сравнение характеристик насосов
- •Области применения штанговых насосов
- •Возможности применения штанговых насосов в обсадных колоннах
- •Спецификация базовых типов скважинных штанговых насосов
- •Примеры обозначения насосов
- •Соответствие обозначения насосов по российскому стандарту и api Spec 11ax
- •2.2.11.1. Цилиндры скважинных штанговых насосов
- •Технические характеристики безвтулочных цилиндров скважинных насосов
- •Материал цилиндров и условия эксплуатации
- •2.2.11.2. Плунжеры скважинных штанговых насосов
- •Технические характеристики плунжеров
- •Материалы, рекомендуемые для изготовления плунжеров
- •Группы посадок сопряжения «плунжер — цилиндр»
- •2.2.11.3. Клапаны скважинных штанговых насосов
- •Материалы деталей клапанов скважинных штанговых насосов
- •Технические характеристики клапанов
- •2.2.11.4. Замковые опоры, уплотнительные элементы, автосцепы, сливные устройства и штоки скважинных штанговых насосов
- •Технические характеристики замков насосов
- •Технические характеристики автосцепа
- •Технические характеристики штоков
- •2.2.11.5. Общие требования к скважинным штанговым насосам
- •2.2.12. Насосные штанги
- •Характеристика материалов отечественных насосных штанг
- •Соответствие прочности штанг российского производства классам прочности штанг по api Spec 11в
- •Технические характеристики полых штанг, выпускаемых в рф
- •Основные размеры полых насосных штанг фирмы sbs
- •Размеры штанги по стандарту api SpecllB
- •Размеры муфты, по стандарту api Spec 11b
- •Области применения насосных штанг
- •Масса тяжелого низа колонны штанг
- •2.2.13. Вспомогательное оборудование скважинных штанговых насосных установок: скребки, центраторы, скважинные дозаторы, штанговые амортизаторы, газосепараторы
- •2.2.13. Станции управления работой скважинных штанговых насосных установок
- •Основные технические характеристики сус «Омь»
- •Основные технические данные и характеристики сус «Омь-2кс»
- •2.3. Установки штанговых винтовых насосов для добычи нефти
- •2.3.1. Состав установки и ее особенности
- •2.3.2. Классификация вшну
- •2.3.3. Скважинный штанговый винтовой насос
- •Технические характеристики винтовых штанговых насосов зарубежных фирм
- •2.3.4. Привод скважинных штанговых винтовых насосов
- •2.3.5. Особенности работы и расчета штанг с винтовыми насосами
- •2.3.6. Подбор оборудования скважинных штанговых винтовых насосных установок
- •Глава III установки скважинных насосов с гидроприводом
- •3.1. Скважинные гидропоршневые насосные установки
- •3.1.1. Состав оборудования скважинных гидропоршневых насосных установок
- •3.1.2. Скважинные гидропоршневые двигатели, насосы и золотники
- •Характеристики гидропоршневых насосных агрегатов фирмы Kobe
- •3.1.3. Поверхностное оборудование гидропоршневых насосных установок
- •3.1.4. Некоторые расчетные зависимости рабочих параметров для подбора гидропоршневых насосных установок
- •Структура расчетов по подбору гидропоршневых насосов
- •Определение расхода рабочей жидкости
- •Определение силового давления рабочей жидкости
- •Среднее давление рабочей жидкости на входе в погружной агрегат
- •Определение мощности и коэффициента полезного действия гидропоршневой установки
- •3.2. Скважинные струйные насосные установки
- •3.2.1. Конструкции скважинных струйных насосов
- •Технические характеристики
- •Технические характеристики струйных аппаратов
- •3.2.2. Поверхностное оборудование струйных насосных установок
- •3.3. Скважинные гидроштанговые насосные установки
- •3.3.1. Схемы скважинных гидроштанговых насосов и двигателей
- •3.3.2. Схемы поверхностного оборудования скважинных гидроштанговых установок
- •Технические характеристики ску
- •Технические характеристики установки угшн-5-15-1000
- •3.3.3. Некоторые теоретические и расчетные зависимости рабочего процесса гидроштангового насоса
- •3.4. Гидроимпульсные насосные установки
- •Теоретические основы работы гидротаранов и гидроимпульсных насосов
- •3.5. Турбонасосные установки
- •3.6. Вибрационные насосные установки
- •Технические характеристики вибрационного насоса
- •Принцип действия вибрационного насоса
- •Глава I.
- •Глава II.
- •Глава III.
Проверка диаметрального габарита погружного оборудования
Диаметральный габарит погружного оборудования должен обеспечить спуск и подъем его без повреждения в скважину и достаточно полное использование внутренней полости скважины. Обычно зазор между оборудованием и обсадными трубами составляет 3—10 мм. При значительной глубине скважины и увеличенной ее кривизне необходимо принимать увеличенный зазор. Диаметральный габарит определяется обычно в тpex сечениях по длине оборудования. Первое сечение берется у муфты НКТ. Здесь диаметральный габарит равен сумме диаметров кабеля и муфты с учетом плюсовых допусков на их изготовление. Второе сечение берется над погружным агрегатом с учетом его габарита и габарита ближайшей муфты НКТ, у которой находится круглый кабель. Такая муфта обычно расположена в 10—20 м от агрегата и вместе с последним представляет довольно жесткую систему. Если габарит этого сечения превышает допустимый, то трубы заменяются на меньший размер на длине 40—50 м. Таким образом, уменьшается жесткость этой системы (НКТ — погружной агрегат) без существенного увеличения потерь напора в трубах.
Последнее сечение — диаметральное сечение самого агрегата (Da) без муфты, труб и круглого кабеля.
Если габариты оборудования неприемлемы в первом и после днем сечениях, необходимо изменить размер кабеля, НКТ, насоса или двигателя. При этом проверяются расчетом и соответствующие этапы выбора узлов установки, указанные в предыдущих разделах.
Проверка параметров трансформатора и станции управления
Трансформатор проверяется на возможность поднять напряжение тока до суммы напряжения, требуемого двигателем, и снижения напряжения в кабеле в рабочем режиме двигателя. Кроме того, проверяется мощность трансформатора.
Снижение напряжения в кабеле определяется по зависимости (1.45), но с учетом рабочей, а не пусковой силы тока. Мощность проверяется сравнением мощности трансформатора (в кВ·А) и мощности, которую необходимо ввести в скважину (в кВ·А).
При выборе станции управления необходимо учитывать тип трансформатора, силу тока, подаваемого на двигатель, и некоторые другие условия.
КПД поверхностного оборудования для расчетов можно принимать равным примерно 0,98.
1.8.3. Алгоритм «машинного» подбора уэцн к скважине
Появление, бурный рост возможностей и повсеместное внедрение электронно-вычислительных машин не мог не вызвать стремление использовать их уникальные возможности для упрощения и ускорения проведения расчетов подбора установок ЭЦН к нефтяным скважинам. При этом появляется возможность не только ускорить подбор, но и повысить его точность за счет отказа от многих упрощений, требующихся при ручном счете. Так, например, при подборе с помощью ЭВМ, нет необходимости в некоторых допущениях.
При «машинном» подборе УЭЦН значение суммарного перепада давления (ΔР) на расчетном участке обсадной колонны или колонны НКТ складывается из нескольких основных составляющих — потерь на трение, потерь на преодоление сил тяжести, инерционная составляющая и работа газа.
Плотность газа водонефтяной смеси рассчитывается с учетом скольжения газовой фазы по отношению к нефтяной и с учетом скольжения самой нефти относительно воды. Учет эффекта относительной скорости необходим на участке «забой скважины — прием насоса» и желателен на участке «нагнетание насоса — устье скважины». При определении плотности газоводонефтяной смеси, особенно при условии Р < Рнас, необходимо учитывать термодинамические зависимости процесса разгазирования (давления, температуры, коэффициента сжимаемости, показателя политропы и других факторов) и истинное газосодержание, зависящее от структуры потока и влияния вязкостных сил. При этом необходимо учитывать вязкость не только жидкой фазы откачиваемого флюида, но и вязкость попутного нефтяного газа. Возможность расчета изменений состояния откачиваемого флюида с малым шагом по высоте столба (по глубине скважины) обеспечивает возможность пренебречь дроссель-эффектом и подсчитывать изменение температуры на участках по линейной зависимости. Необходимо отметить, что при подборе УЭЦН с помощью ЭВМ целесообразным, а часто и необходимым, является точный термодинамический расчет, учитывающий теплотворную способность погружного оборудования, процессы теплообмена в погружном насосе, на внешних поверхностях погружного электродвигателя и кабеля, теплопередачу от потока пластовой жидкости к стенкам колонны НКТ и обсадной колонны и теплообмен с окружающей средой.
При программном решении задачи подбора УЭЦН к скважине необходимо представить характеристики насосов и погружных электродвигателей в виде зависимостей типа Н = f(Q), как при работе на воде, так и для работы на реальных жидкостях.
Расчет основных данных потока пластового флюида в колонне НКТ и в обсадной колонне ведется по одной и той же методике, а сам расчет может быть произведен как «сверху вниз», т.е. используя в качестве начальных условий устьевые значения давления, температуры, дебита нефти, воды и газа; так и «снизу вверх». В этом случае начальными условиями становятся пластовые и забойные величины (давление, температура, газовый фактор, вязкость, плотность и т.д.).
В качестве исходных данных используются вышеприведенные данные, однако в связи с уменьшением количества допущений, эти данные должны быть дополнены следующими величинами:
теплоемкость воды, нефти, газа;
коэффициенты теплопроводности материала труб, цементного камня и горных пород, через которые проведена скважина;
температурный градиент;
термодинамические характеристики попутного нефтяного газа (коэффициент сжимаемости, состав, парциальные давления и т.д.);
коэффициент шероховатости внутренних поверхностей труб (НКТ и обсадных);
инклинограмма обсаженной трубами скважины (с возможно малым шагом инклинограммы, например, — 10 м);
электротехнические показатели погружных двигателей и токоведущих кабелей;
пластовые значения температуры, проницаемости и пористости горной породы, водо- и газонасыщенности пласта;
коэффициент, характеризующий качество вскрытия пласта и фильтрационные процессы в призабойной зоне.
Методики пошаговых расчетов при «машинном» подборе УЭЦН достаточно подробно описаны в [12].
Применение ЭВМ позволяет использовать указанную методику без упрощений, что при малом времени расчетов приводит к наиболее точным результатам. Однако сложность в данном варианте подбора УЭЦН к скважинам состоит в том, что каждый новый подбор должен быть предварён комплексными исследованиями пласта и его призабойной зоны, зоны перфорации, забоя скважины, обсадной колонны, пластового флюида. При использовании устаревших данных (давностью свыше 3—6 месяцев в зависимости от динамичности процессов разработки месторождения и его свойств) или усредненных данных по какому-то пласту или месторождению эффект от «машинного» подбора резко снижается, а затраты на разработку сложных всеобъемлющих программ подбора становятся просто необоснованными.
Одними из первых развернутые методики подбора установок ЭЦН за рубежом стали применять специалисты фирмы REDA. Как уже указывалось, в 1972 г. фирма объявила о создании системы подбора насосов к скважинам «КОМПСЕЛ», с помощью которой проектируются индивидуальные оптимальные насосные системы для каждой конкретной скважины.
Данная система подбора базируется на основных данных по всем выпускаемым фирмой REDA элементам УЭЦН, а также на исходных промысловых данных. К исходным данным относится информация о конкретной скважине (месторождение, номер или название скважины, конструкция скважины — диаметр, глубина, инклинограмма, зона перфорации; пластовые характеристики — удельный вес воды, нефти, газовый фактор, давление, температура на забое скважины, планируемые дебиты нефти и воды, давление на устье скважины), а также история эксплуатации данной скважины (средний дебит, обводненность, максимально допустимый дебит скважины, глубина залегания продуктивного пласта, длина и диаметр насосно-компрессорных труб, исполнения насосная установка) и факторы, осложняющие добычу нефти (наличие абразива, коррозии, парафина и др.).
Хотя фирма REDA не раскрывает структуру и алгоритмы, на которых базируется им система подбора, однако сам набор исходных данных покалывает, что фирмой применяется достаточно упрошенная методика расчета основных данных при работе насосных установок.
Более полной методикой подбора своих насосных установок пользуются специалисты фирмы ESP. Кроме указанных в вопроснике фирмы REDA параметров, в опросном листе ESP значатся коэффициент продуктивности, давление насыщения, температура забоя и устья скважины, вязкость нефти при разных температурах, значения нескольких характерных точек кривой разгазирования. Все это означает, что при подборе установок используются зависимости для определения действительных внешних характеристик погружных насосов при их работе на реальных жидкостях, а также методы определения реального изменения фазового состояния откачиваемой жидкости на участках «забой скважины — прием насоса» и «насос — устье скважины»
В вопроснике-заявке на оборудование и рекомендации фирмы Centrilift указывается тип пласта (песчаник, известняк и т. п.), данные по давлению насыщения и кривой разозирования, однако не запрашиваются значения коэффициентов вязкости нефти и пластовой воды. Это значит, что данные параметры не применяются при расчетах значения истинной вязкости, плотности и газосодержания водонефтегазовой смеси.
В 1997 г. на рынок вышла программа SubPUMP™, разработанная компанией Petroleum Information/Dwight's, USA.
Данная программа позволяет выбирать оптимальные решения по системе «Пласт — скважина — насос» для множества вариантов подбора, отвечающим исходным требованиям пользователя.
Программа имеет развитый интерфейс, позволяющий работать с различными системами единиц (СИ, американская и канадская нефтепромысловые системы и другие), библиотеки соотношений «давление — объем — температура» для различных пластовых флюидов, аппарат для использования данных по вязкости при изменении температуры для расчетов движения жидкости по колоннам обсадных и насосно-компрессорных труб, при движении в погружном насосе.
База данных программы SubPUMP™ содержит информацию о характеристиках насосов, двигателей, кабелей, ступеней, гидрозащиты, производимых крупнейшими поставщиками установок погружных центробежных насосов — компаниями Centrilift, ESP, ODI, REDA, АЛНАС. Кроме базы данных в программе есть возможность изменять характеристики узлов и установок в целом по итогам их стендовых испытаний.
Итогом работы программы SubPUMP™ вне зависимости от подхода пользователя к проблеме подбора УЭЦН всегда является система с максимальным КПД или с минимальными общими затратами на добычу единицы скважинной продукции.
Программа SubPUMP™ работает под управлением Windows. В последнее время появились материалы о программе FloSystem 3, являющейся последней разработкой компании Edinburg Petroleum Services Ltd, UK.
FloSystem 3 включает в себя две программы: WellFlo и FieldFlo. WellFlo позволяет пользователю построить модель скважины графическим способом или в виде таблицы, а также произвести подбор оборудования (УЭЦН или газлифт) при различных условиях эксплуатации. Программа FieldFlo работает с объединенной моделью месторождения и отдельных скважин, учитывая взаимовлияние нагнетательных и добывающих скважин и процессы фильтрации пластовой жидкости в рабочих пластах.
В базе данных программы имеются характеристики насосных установок основных мировых производителей (в том числе — фирмы АЛНАС), зависимости для расчетов изменения давления, температуры, газосодержания и других параметров в любой точке интервала «забой — прием насоса», «прием насоса — выкид насоса», «выкид насоса — устье скважины».
Фирмой «ОКБ БН — КОННАС» со второй половины 1980-х годов активно внедрялся на нефтяных промыслах Советского Союза пакет прикладных программ (ППП) СПИНАКЕР, который, по утверждению авторов, представлял собой экспертную систему, призванную обеспечивать высокого эффективность эксплуатации нефтяных пластов, скважин и погружных центробежных насосов. В данном пакете существует и решение задачи о подборе УЭЦН к нефтяной скважине, использующее большую базу данных.
Данная база содержит сведения о конструкции скважин, свойствах пластовых флюидов, о характеристиках электроприводного насосного оборудования, и ретроспективы параметров технологического оборудования. Необходимо отметить, что в данной методике, переложенной для расчета на совместимые с PC IBM компьютеры, применяется один из самых полных и имеющих наименьшее количество допущений алгоритмов подбора оборудования к нефтяным скважинам [11]. Однако отсутствие допущении, упрощающих алгоритм подбора, требует оперативного получения самой полной и достоверной геолого-технической информации, без которой применение ППП СПИНАКЕР становится нецелесообразным.
Несколько особняком стоит программный продукт, разработанный на кафедре машин и оборудования нефтяной и газовой промышленности РГУ нефти и газа имени И. М. Губкина и являющийся частью программно-аппаратного комплекса системы диагностики работоспособности скважинных насосных установок [3].
Данная программа подбора и диагностики скважинного насосного оборудования (как штангового, так и бесштангового — УЭЦН, УЭВН, УЭДН) имеет, кроме развитой базы данных (практически все выпускаемые в мире типоразмеры УЭЦН, винтовых и диафрагменных насосов) большое число первичных датчиков, установленных на добывающих скважинах. Это позволяет получить оперативную промысловую информацию, необходимую для качественного подбора оборудования. Методически программа подбора УЭЦН (работает в оболочке Windows) основана на положениях, рассмотренных в разделе 1 настоящей главы. Пакет указанных прикладных программ известен у нефтяников России под именем «Диагност», а ее более поздние версии, направленные на подбор насосных установок для добычи нефти, — «Автотехнолог». В настоящее время программа «Автотехнолог» имеет очень широкое распространение в нефтяной промышленности России и позволяет производить подбор всех типов насосных установок для добычи нефти (УЭЦН, УЭВН, УЭДН, УШСН, УВНПП и т.д.) выпускаемых в мире, а также проводить виртуальную оптимизацию работы системы «пласт — скважина — насосная установка». Программа имеет также конверторы, позволяющие использовать существующие на нефтяных промыслах базы данных по конструкции скважин и инклинометрии, по пластовым данным, по наличию оборудования на базах производственного обслуживания и на складах. Уточненные алгоритмы, удобный интерфейс и наличие нескольких «ноу-хау» привели к тому, что к концу 2001 г. программа «Автотехнолог» заняла доминирующее положение на нефтяных промыслах Российской Федерации.
Еще одной методикой, имеющей программное переложение для работы на PC IBM и совместимых с ними машинах, является методика, разработанная на кафедре разработки нефтяных месторождений РГУ нефти и газа имени И.М. Губкина. Данная методика является продолжением работ П.Д. Ляпкова, И.Т. Мищенко, В.И. Игревского и А.Н. Дроздова. Программа адаптирована к быстрому подбору насосных установок к скважинам по ограниченному количеству основных исходных данных.
Программы подбора оборудования к скважинам были разработаны в разное время в АО «Самаранефтегаз», АО «Татнефть», АО «Башнефть», АО «Нижневартовскнефтегаз» и некоторых других нефтедобывающих предприятиях. Все перечисленные программы являются упрощенными с точки зрения заложенных в них алгоритмов расчетов, но часто имеют достаточную для решения сиюминутных технологических задач точность и достоверность результатов.
Большое разнообразие методик и программ подбора установок погружных насосов для добычи нефти, предлагаемых отечественными и зарубежными разработчиками, приводит к проблеме рационального выбора среди них наиболее приемлемых для потребителей.
Основными критериями выбора программы подбора УЭЦН являются быстродействие, универсальность и подстраиваемость программы; наличие, качество и объем базы данных; объем внедрения УЭЦН или фонд эксплуатационных скважин; наличие или отсутствие у потребителя современной мощной вычислительной техники; сложность задачи и требуемая точность получаемых результатов; стоимость программного продукта.
В зависимости от набора требуемых параметров программы подбора УЭЦН потребитель может выбрать для себя одну или несколько программ и подпрограмм, обеспечивающих его потребности в подборе оборудования и оптимизации работы нефтяных скважин.
Основные сведения о некоторых современных программах и алгоритмах подбора установок ЭЦН к нефтяным скважинам приведены в табл. 1.80.
Таблица 1.80
