- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Решение.
Напряжение на конденсаторе U найдем из закона Ома:
U = JR,
где R = ρ(d/S) – омическое сопротивление конденсатора →
U = Jρ(d/S).
Напряженность поля внутри конденсатора
E = U/d = Jρ/S.
Эту напряженность создают заряды Q на обкладках конденсатора:
Е = Q/( ε0εS).
Положительный заряд Q = ε0εSE создает напряженность E1 поля, действующую на отрицательный заряд:
E1 = Q /(2ε0S) = ½ εE.
Обратим внимание, что суммарное поле поляризационных зарядов вне диэлектрика равно нулю, и поэтому сила электрического действия на заряды обкладок равна нулю. На отрицательные заряды действует сила
F = QE = ½ εE ε0εSE = ½ ε0ε2E2S.
Подставляя в это выражение Е =Jρ/S, окончательно получим
F = ε0ε2ρ2J2/2S.
2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
Ответ: R = r(1+√3).
Решение.
П
усть
полное сопротивление цепи равно R.
Очевидно, если мы выделим мысленно
первую ячейку, то получим ту же цепь с
сопротивлением R, так как число ячеек
бесконечно. Тогда сопротивление между
точками 1 и 2 равно R и
R = 2r + Rr/(R+r),
Отсюда
R = r(1+√3).
21. Электрический прибор подключен к источнику питания двумя длинными проводами сечения So = 1 мм2 каждый. При включении прибора выяснилось, что напряжение на приборе меньше напряжения на выходе источника питания на 10%. Какой должна быть площадь сечения подводящих проводов той же длины, для того чтобы напряжение уменьшилось только на 1%. (Меледин, 3.83)
Ответ: Sx = 11 мм2.
Решение
Напряжение на приборе равно
Uпр = UoR/(R + r),
где R – сопротивление прибора, r – сопротивление проводов; отсюда
r = R(Uпр/U – 1).
В первом случае сопротивление проводов
r1 = R(100/90-1) = R/9,
во втором случае сопротивление
r2 = R(100/99 -1) = R/99.
Отсюда r1/r2 = 11, т.е. надо увеличить сечение в 11 раз. Таким образом, Sx = 11 мм2.
2
2.
В плоский конденсатор с квадратными
пластинами вдвигается с постоянной
скоростью v металлическая пластина.
Конденсатор включен последовательно
с резистором, имеющим сопротивление R,
и с источником тока, ЭДС которого равна
ε (см. рис.). Найти установившуюся мощность,
выделяющуюся на резисторе. Расстояние
между пластинами конденсатора равно
do. Площадь вдвигаемой
пластины равна площади пластин
конденсатора L×L, а ее толщина равна d.
(Меледин, 3.92)
Ответ: P = ε2R/{R + (do – d)do/(εoLvd)}2.
Решение
П
усть
пластина вошла в конденсатор на расстояние
х, тогда образовавшуюся систему можно
рассматривать как два параллельно
соединенных конденсатора с площадями
L×x и L×(L – x). При этом, первый из этих
конденсаторов, в свою очередь, можно
рассматривать как два последовательно
соединенных конденсатора с расстояниями
между пластинами z и do – d – z, где
z – расстояние от вдвигаемой пластины
до одной из пластин конденсатора. Емкость
первого конденсатора найдем из соотношения
1/C1 = z/(εoLx) + (do – d – z)/(εoLx) = (do – d )/(εoLx) →
C1 = εoLx/(do – d ).
Емкость второго конденсатора равна
C2 = εoL(L – x)/do.
Изменение заряда на этой системе конденсаторов при увеличении расстояния x на Δх = vΔt будет равно
Δq = IΔt = U(ΔC1 + ΔC2) = UεoL [Δx/(do – d) - Δx/do) = UεoLΔxd/[(do – d)do] =
= UεoLvΔtd/[(do – d)do].
Или
I = UεoLvd/[(do – d)do].
где U = ε – IR – напряжение на конденсаторе, I – ток в цепи. Разрешая это уравнение относительно тока, получим
I = ε/{R + (do – d)do/(εoLvd)}.
Отсюда для мощности, выделяющейся в виде теплоты на резисторе, имеем
P = I2R = ε2R/{R + (do – d)do/(εoLvd)}2.
2
3.Конденсатор
емкости С и резисторы, сопротивления
которых равны R1=R2=R3=R4=R,
включены в электрическую цепь, как
показано на рисунке. Найти установившийся
заряд на конденсаторе. Напряжение Uo
известно. (Меледин, 3.96)
Ответ: q = 4CUo/5 .
