- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Решение
Обозначим через ν1,2 число молей в первой и второй колбах. Уравнения газового состояния для начального и конечного состояний в обеих колбах дает
P1V = ν1RT, P2V = ν2RT,
P1/V = ν1/ RT1/, P2/V = ν2/ RT2/.
По закону сохранения энергии
с(ν1 +ν2)T = c(ν1/ T1/ + ν2/ T2/);
отсюда
P1 + P2 = 2P,
Так как количество газа не изменяется, то
ν1 +ν2 = ν1/ + ν2/;
тогда
2/T = 1/T1/ + 1/T2/.
Окончательно
T2/ = T/[2 – (T/T1/)].
28. В вертикальном цилиндрическом сосуде, площадь сечения которого равна S, под поршнем массы m находится газ, разделенный перегородкой на два одинаковых объема. Давление газа в нижней части сосуда равно Р, внешнее давление равно Ро, температура газа в обеих частях сосуда равна Т. На сколько сместится поршень, если убрать перегородку? Внутренняя энергия одного моля газа U = cT. Высота каждой части сосуда равна h. Стенки сосуда и поршень не проводят тепла. Трением пренебречь. (Меледин, 2.59)
Ответ: x = h[c/(c + R)][(P + Pо + mg/S)/(Pо + mg/S)].
Решение
Число молей газа в нижней и верхней частях сосуда
ν1 = PhS/(RT), ν2 = (Pо + mg/S)hS/(RT).
После того, как убрали перегородку, давление во всем сосуде стало равно P = Pо + mg/S. Тогда, используя уравнение газового состояния для конечного состояния, получаем
(Pо + mg/S)(2h – x)S = (ν1 + ν2)RT2 = (P + Pо + mg/S)hS(T2/T).
Поскольку газ в цилиндре теплоизолирован:
ΔQ = ΔU + A = 0,
или
P ΔV = (Pо + mg/S)Sx = c((ν1 + ν2)R(T2 – T) = (c/R)hS(P + Pо + mg/S)[(T2/T) – 1].
Из этих уравнений получаем
x = h[c/(c + R)][(P + Pо + mg/S)/(Pо + mg/S)].
29. В чайник со свистком налили воду массой 1 кг с температурой 20оС и поставили на электроплитку мощностью 900 Вт. Через 7 минут раздался свисток. Сколько воды останется в чайнике после кипения в течение 2-х минут? Каков КПД электроплитки?
Ответ: mв = 960 г, η = 0.89.
Решение
По определению КПД равен
η = QПОЛ/QЗАТР = Сm(Т100 - Т20)/Pτ1 = 0.89,
где Т100 = 373 К, Т20 = 293 К, Р = 900 Вт, τ1 = 420 с, m1 = 1 кг, С = 4.2 кДж/(кг.К).
Полученное значение КПД в интервале температур 20 – 100оС в большей степени характеризует КПД плитки в близи температуры кипения, т.к. потери тепла за счет рассеяния в окружающую среду максимальны при наибольшей разнице температур среды и нагревательного элемента. Поэтому полученное значение может быть использовано и для расчетов процесса кипения.
Запишем уравнение теплового баланса для процесса кипения воды
ηPτ2 = λm2,
где τ2 = 120 с, m2 – масса выкипевшей воды, λ = 2.3 МДж/кг. Отсюда
m2 = ηPτ2/λ ≈ 42 г,
тогда масса оставшейся в чайнике воды равна mB ≈ 0.96 кг.
30. В калориметре находится 1 кг льда при температуре Т1 = -40оС. В калориметр пускают 1 кг пара при температуре Т2 = 120оС. Определить установившуюся температуру и агрегатное состояние системы. Нагреванием калориметра пренебречь.
Ответ: пар и вода, mП = 0.65 кг, mВ = 1.35 кг.
Решение
Прежде чем составлять уравнение теплового баланса, оценим, какое количество теплоты могут отдать одни элементы системы, а какое количество теплоты могут получить другие. Тепло отдают
пар при охлаждении до 100оС,
пар при конденсации,
вода, сконденсировавшаяся из пара при остывании от 100оС.
Тепло получают:
лед при нагревании до 0оС,
лед при плавлении,
вода, полученная изо льда, при нагревании от 0оС до некоторой температуры.
Оценим количество теплоты, отданное паром в процессах 1 и 2:
Qотд = CПmП(Т2 - 100о) + LmП = (2.2.103.1.20 + 2.26.106) = 2.3.106 Дж.
Количество теплоты, полученное льдом в процессах 1, 2:
Qпол = CЛmЛ(0о – Т1) + λmЛ = (2.1.103.1.40 + 3.3.105) = 4.14.105 Дж.
Из расчетов ясно, что Qотд > Qпол. Растаявший лед затем нагревается. Определим, какое количество теплоты нужно дополнительно, чтобы вода, образовавшаяся изо льда, нагрелась до 100оС:
Qпол = CВmЛ(100о – 0о) = 4.2.105 Дж.
Следовательно. Суммарное количество теплоты, которое может получить лед в результате процессов 1-3, нагреваясь до 100оС, есть
Qпол,сум = 8.34.105 Дж → Qпол,сум < Qотд.
Из последнего соотношения следует, что не весь пар будет конденсироваться. Часть оставшегося пара можно найти из соотношения
mост = (Qотд - Qпол,сум)/L = 0.65 кг.
Окончательно, в калориметре будут находиться пар и вода при температуре 100оС, при этом mП = 0.65 кг, mВ = 1.35 кг.
31. Электрическим кипятильником мощностью W = 500 Вт нагревают воду в кастрюле. За две минуты температура воды увеличилась от 85оС до 90оС. Затем кипятильник выключили, и за одну минуту температура воды упала на один градус. Сколько воды находится в кастрюле? Удельная теплоемкость воды равна СВ = 4.2 кДж/(кг.К).
Ответ: m ≈ 1.8 кг.
