- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Решение.
Если температура газа увеличилась на ΔТ, то по первому началу термодинамики
С ΔТ = CV ΔТ + PΔV.
Уравнение состояния газа запишется в виде
PV = (k xα/S) xS = k xα+1 = RT.
Отсюда
k (α + 1) xαΔx = R ΔТ, ΔV = SΔx.
Подставляя полученные соотношение в первое начало термодинамики, запишем
С ΔТ = CV ΔТ + (k xα/S)S RΔТ / [k(α + 1) xα]
или
С = CV + R/(α + 1).
Поскольку газ одноатомный, то CV = 3R/2 и для значения α получаем
α = R/(C – CV) –1 = 3/2.
15. Моль идеального газа нагревается при постоянном давлении, а затем при постоянном объеме переводится в состояние с температурой, равной начальной То = 300К. Оказалось, что в итоге газу сообщено количество теплоты Q = 5кДж. Во сколько раз изменился объем, занимаемый газом?
Ответ: n = Q/RTo + 1 ~ 3.
Решение.
Н
арисуем
график процесса в координатах
P – V (см. рис.). Пусть конечный объем равен nVo. Тогда, т.к. 1 – 2 – изобара, температура в точке 2 равна nTo.
Q12 = CP ΔТ ; Q23 = - CV ΔТ ;
Q = Q12 + Q23 = (CP – CV) ΔТ = R (n –1) To.
Итак,
N = Q/RTo + 1 = 3.
16. В проточном калориметре исследуемый газ пропускают по трубопроводу с нагревателем. Газ поступает в калориметр при Т1 =293К. При мощности нагревателя N1 = 1кВт и расходе газа q1 = 540кг/ч температура Т2 газа за нагревателем оказалась такой же, как и при удвоенной мощности нагревателя и увеличении расхода газа до q2 = 720кг/ч. Найти температуру Т2 газа, если его молярная теплоемкость в этом процессе (Р = const) CР = 29.3Дж/(мольК), а молекулярная масса μ = 29 г/моль.
Ответ: Т2 = 312.8К
Решение.
З
а
интервал времени Δt
нагреватель выделяет количество энергии
N Δt, которая
частично отдается газу массой ΔМ,
походящему за это время через спираль
нагревателя и, частично в количестве
Qпот теряется
вследствие теплопроводности и излучения
стенок трубы и торцев устройства.
Уравнение теплового баланса для двух
условий опыта имеют вид (cчитая
мощность потерь одинаковой)
N1 Δt = Qпот + C (ΔМ1/μ) ΔT,
N2 Δt = Qпот + C (ΔМ2/μ) ΔT.
Вычитая из второго уравнения первое, получим
N2 - N1 = (C /μ) (ΔМ2/ Δt - ΔМ1/ Δt) ΔT = (C /μ) (q2 – q1) ΔT.
Отсюда
T2 = T1 + (μ/C) (N2 - N1)/ (q2 – q1) = 312.8 K
17. Паровая машина мощностью N = 14.7 кВт потребляет за t = 1ч работы m = 8.1 кг угля с удельной теплотой сгорания q = 3.3.107 Дж/кг. Температура котла to1 = 200oC, температура холодильника to2 = 58oC. Найти фактический КПД ηф этой машины. Определить, во сколько раз КПД ηид идеальной тепловой машины, работающей по циклу Карно при тех же температурах нагревателя и холодильника, превосходит КПД этой паровой машины.
Ответ: ηф = 20%, ηид/ηф = 1.5.
Решение.
КПД реальной тепловой машины ηф определяется отношением работы, совершенной за время t , к количеству теплоты Q1 , которое отдано нагревателем за это время:
ηф = А/ Q1 .
Работу, совершенную паровой машиной можно определить как
A = Nt,
где N – мощность машины. Паровая машина отдает количество теплоты
Q1 = mq,
где m – масса сгоревшего угля. Тогда
ηф = Nt / mq .
КПД идеальной тепловой машины, работающей по циклу Карно
ηид = (Т1 – Т2)/Т1.
Отсюда
ηид/ηф = (Т1 – Т2)/(Т1 ηф).
Подставляя численные значения, получим ηф = 20%, ηид/ηф = 1.5.
1
8.
С ν = 5 моль идеального одноатомного
газа осуществляют круговой цикл,
состоящий из двух изохор и двух адиабат
(см. рис.). Определить КПД η теплового
двигателя, работающего в соответствии
с данным циклом. Определить максимальный
КПД ηmax ,
соответствующий этому циклу. В состоянии
2 газ находится в тепловом равновесии
с нагревателем, а в состоянии 4 - с
холодильником. Известно, что Р1
= 200 кПа, Р2 = 1200 кПа, Р3
= 300 кПа, Р4 = 100 кПа, V1
= V2 = 2
м3, V3
= V4 = 6
м3.
Ответ: η = 40%, ηmax = 75%.
