- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Решение.
Запишем второй закон Ньютона для движения бруска вдоль наклонной плоскости:
m a = mgsinα – μmgcosα ;
где μ – коэффициент трения. Отсюда:
μ =(gsinα – a)/gcosα.
Максимальное значение коэффициент трения будет иметь на участке 2-3, где ускорение отрицательно: а = -2. μmax = (10/7 + 2) / [10(48)1/2 / 7] ~ 0.3.
6
.
Шайба, брошенная вдоль наклонной
плоскости, скользит по ней, двигаясь
вверх, а затем возвращается к месту
броска. График зависимости модуля
скорости шайбы от времени дан на рисунке.
Найти угол наклона плоскости к горизонту.
Ответ: sinα ~ 0.147. (МФТИ,1992)
Решение.
Запишем второй закон Ньютона для движения шайбы вдоль наклонной плоскости вверх и вниз:
m aU = mgsinα – kmgcosα ;
m aD = mgsinα + kmgcosα ,
где k – коэффициент трения. Отсюда:
sinα = ½ (aU + aD) / g.
Определяя по графику aU и aD , получим sinα ~ 0.147, α ~ 9o.
7. К неподвижному бруску, расположенному на гладкой горизонтальной поверхности, прикреплены две невесомые пружины с жесткостями k1 и k2 (см. рис.). Второй конец пружины с жесткостью k1 прикреплен к вертикальной стенке. Свободный конец пружины с жесткостью k2 начинают горизонтально перемещать с постоянной скоростью vo . Через некоторое время t = τ ускорение бруска оказалось равным нулю. Чему равны удлинения пружин в этот момент?
Ответ:
Δx1
= k2
voτ
/(k1
+ k2),
Δx2
= k1
voτ
/(k1
+ k2).
Решение.
Поскольку ускорение бруска в момент времени t = τ равно нулю, то результирующая сила, действующая на брусок должна быть равна нулю, т. е
k1 Δx1 = k2 Δx2.
Обозначим удлинения пружин в момент t = τ через Δx1 и Δx2. очевидно, что суммарное удлинение равно перемещению свободного конца второй пружины:
Δx1 + Δx2 = vo τ.
Из совместного решения двух уравнений получим
Δx1 = k2 voτ /(k1 + k2), Δx2 = k1 voτ /(k1 + k2).
8. На наклонной плоскости с углом наклона α неподвижно лежит тело. Коэффициент трения между телом и плоскостью равен k. Наклонная плоскость начинает двигаться по столу с ускорением ао в направлении, указанном стрелкой. При каком значении этого ускорения тело начнет проскальзывать?
Ответ: ао > g(k – tgα)/(k tgα + 1).
Решение
З
апишем
второй закон Ньютона в проекциях на оси
X и Y:
Fтр – mgsinα = maocosα,
N – mgcosα = - maosinα.
Отсюда
Fтр = mgsinα + maocosα,
N = mgcosα - maosinα.
Для того чтобы проскальзывание отсутствовало, необходимо
Fтр ≤ kN,
или
gsinα + aocosα ≤ k(gcosα - aosinα).
Отсюда :
ао ≤ g(k – tgα)/(k tgα + 1).
Таким образом, проскальзывание начнется при
ао > g(k – tgα)/(k tgα + 1).
9
.
Брусок массы M находится на гладком
горизонтальном столе, по которому он
может двигаться без трения. На бруске
стоит куб массой m , упирающийся в
небольшой выступ. При каком максимальном
значении модуля силы F, приложенной к
бруску, не произойдет опрокидывания
куба?
Ответ: F = ( M+m)g.
Решение.
При максимально возможном ускорении а бруска кубик опирается на него в точке О. В этой точке на кубик действует сила реакции N бруска и горизонтальная сила F1, сообщающая бруску ускорение а. Очевидно, что
F1 = ma; N + mg = 0.
Для того чтобы кубик не вращался равнодействующая всех сил, действующих на него, должна проходить через центр масс кубика. Это означает, что α = ¼ π, т.е. F1 = N, или
ma = mg.
Отсюда, а = g. Для того чтобы брусок и кубик двигались с таким ускорением, на брусок должна действовать сила
F = (M + m)a = (M + m)g.
1
0.
Определить ускорения каждого из тел в
системе, изображенной на рисунке. Нити
нерастяжимы. Массой блоков и нитей
пренебречь. Трения нет. Массы грузов m1
= 0.1кг, m2 = 0.6кг. Угол α =30о.
Ответ: а1 = 9.8м/с2, а2 = 4.9м/с2.
