- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Решение.
В момент времени t, когда скорость груза становится равной v(t) , точно такую же по величине линейную скорость должна иметь и любая точка тонкого обода. Следовательно, кинетическая энергия системы “колесо-груз” должна стать равной
Wk = ½ (M + m)v2.
На основании закона сохранения механической энергии можно записать
½ (M + m)v(t)2 = mgh(t).
Величину тангенциальной составляющей ускорения обода можно считать равной ускорению груза
v(t) = aτ t ; h(t) = ½ aτ t2.
Подставляя эти соотношения в предыдущие уравнение, получим:
aτ = mg/(m + M).
Учитывая, что нормальная составляющая ускорения равна
an = v2/R,
определим полное ускорение точек обода в момент времени t:
a = (an2 + aτ2)1/2 = mg{R2 + [mgt2/(M + m)]2}/[(M + m)R].
3
.
Шарикоподшипник поддерживает конец
оси вала, вращающегося с угловой скоростью
ω. Диаметр оси вала равен d
, диаметр обоймы шарикоподшипника равен
D
(см. рис.). Найти линейную скорость
движения центра одного из шариков, если
обойма неподвижна и если обойма вращается
с угловой скоростью Ω. Считать, что в
обоих случаях шарики катятся по валу и
обойме без проскальзывания.
Ответ: vo = ½ (v1 + v2) = (ωd + Ω D)/4.
Решение.
Линейная скорость точек на окружности вала
v1 = ½ ωd.
Линейная скорость точек обоймы
v2 = ½ Ω D.
Так как шарики катятся без проскальзывания, такими же будут и мгновенные скорости тех точек шарика, которые в данный момент соприкасаются с валом и обоймой. Но мгновенную скорость любой точки шарика можно рассматривать как сумму двух скоростей – скорости движения его центра vo и линейной скорости вращательного движения вокруг центра. Вращение шарика будет происходить с некоторой угловой скоростью ωо. Поэтому
v1 = vo - ωоr , v2 = vo + ωоr.
Отсюда
vo = ½ (v1 + v2) = (ωd + Ω D)/4.
В этом выражении каждая из угловых скоростей может быть как положительной, так и отрицательной. При Ω = 0
vo = ωd/4.
4
.
Стержень длиной l = 0.85 м
движется в горизонтальной плоскости.
В некоторый момент времени скорости
концов стержня равны
v1
= 1 м/с и v2 = 1.5 м/с, причем
скорость первого из них направлена под
углом α = 30о к стержню.
Какова угловая скорость ω вращения
стержня вокруг его центра? (МГУ, фак.
ВМК, 2001)
Ответ: ω = 2 рад/с.
Решение.
Поскольку скорости концов стержня в неподвижной системе отсчета различны, он совершает относительно этой системы сложное движение, представляющее собой сумму поступательного и вращательного движений. При этом скорости разных точек стержня различны. Для определения угловой скорости вращения стержня, удобно перейти в систему отсчета, поступательно движущуюся вместе с его центром масс. С этой целью определим скорость центра масс стержня относительно неподвижной системы отсчета.
Если стержень однороден, то центр его масс совпадает с геометрическим центром, радиус- вектор которого определяется как полусумма радиус- векторов его концов:
rc = ½ (r1 + r2).
Дифференцирование этого равенства по времени дает аналогичное соотношение для скорости центра
vc = ½ (v1 + v2).
Согласно закону сложения скоростей скорости концов стержня в системе отсчета, связанной с его центром, выражаются следующим образом
u1 = v1 – vc = ½ (v1 - v2);
u2 = v2 – vc = ½ (v2 – v1).
Из постоянства длины стержня вытекает, что проекции скоростей его концов на направление стержня в каждый момент времени совпадают:
v1 cosα = v2 cosβ.
Поэтому u1 и u2 перпендикулярны стержню, причем
u1 = u2 = ½ ωl.
Следовательно,
ω = |u2 – u1|/l = (v1 sinα + v2 sinβ) /l.
Учитывая, что
cosβ = (v1/v2) cosα,
получаем ответ
ω = [v1 sinα + (v22 – v12 cos2α )1/2]/l = 2 рад/с.
5. При взрыве покоящейся цилиндрической бомбы радиуса R осколки, разлетающиеся в радиальном направлении, за время t удаляются от оси цилиндра на расстояние L1. На какое расстояние L2 от оси цилиндра удаляются осколки за то же время t , если в момент взрыва бомба будет вращаться вокруг своей оси с угловой скоростью ω? Влиянем силы тяжести пренебречь.
Ответ: L2 = [(ωRt)2 + L12]1/2.
