- •I. Кинематика.
- •1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
- •2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
- •16. Два камня брошены с земли под различными углами к горизонту со скоростями v1 и v2 так, как показано на рисунках. Какой из камней улетит дальше? Сопротивлением воздуха пренебречь.
- •19. Две автомашины тянут третью с помощью привязанного к ней блока (см. Рис.). Ускорения машин а1 и а2 . Определить ускорение буксируемой машины а3.
- •Решение
- •2 1. С помощью графика скорости равноускоренного движения безначальной скорости покажите, что пути, пройденныетелом за последовательные равные промежуткивремени, пропорциональны ряду нечетных чисел.
- •1.1. Равномерное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •15. Небольшое тело падает с высоты h на горизонтальную поверхность. При каждом соударении с поверхностью модуль скорости тела уменьшается в k раз. Найти полный путь, пройденный телом до остановки.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1.3. Криволинейное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •1.4. Комбинированное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •II. Законы Ньютона.
- •2.1. Поступательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •2.2. Вращательное движение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •2.3. Статика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение:
- •Решение.
- •III. Законы Сохранения.
- •3.1. Импульс.
- •1. В каких случаях можно пользоваться законом сохранения импульса?
- •2. За счет какой энергии поднимаются вверх стратостаты шар – зонды?
- •3. Как объяснить тот факт, что при падении камня на Землю изменение импульса Земли равно изменению импульса камня, а изменение кинетической энергии Земли настолько мало, что его можно не учитывать.
- •4. Как должна измениться мощность насоса, чтобы он стал перегонять через узкое отверстие вдвое большее количество воды в единицу времени?
- •3.1. Импульс.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •7. Два шарика падают в облаке пыли. Во сколько раз отличаются скорости шариков, если диаметр одного из них вдвое больше другого.
- •Решение.
- •3.2. Работа, мощность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •3.3. Сохранение энергии, импульса.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •3.4. Механические колебания.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •IV.Механика жидкости и газа.
- •4.1. Гидростатика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •4.2. Гидродинамика.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •V. Молекулярная физика, термодинамика.
- •5.1. Поверхностное натяжение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •5.2. Газовые законы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.3. Термодинамика - I.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Тогда необходимое количество теплоты будет равно
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •5.4. Термодинамика - II.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •5. К идеальному одноатомному газу, заключенному внутри масляного пузыря, подводится тепло. Найти молярную теплоемкость этого газа, если давлением снаружи можно пренебречь. ( мфти, до1992г)
- •Решение.
- •Подставляя это соотношение в первое начало, получаем
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •5.5. Влажность.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VI. Электростатика.
- •6.1.Точечные заряды.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •14. На расстоянии r от центра изолированной металлической незаряженной сферы радиуса r находится точечный заряд q . Определить потенциал сферы.
- •Решение.
- •Решение.
- •Решение.
- •6.2.Пластины, конденсаторы.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •1 2. Трем одинаковым изолированным конденсаторам, емкости с каждый, были сообщены заряды q1, q2 и q3 (см. Рис.). Конденсаторы соединили. Найти новые заряды на конденсаторах. (Меледин, 3.60)
- •Решение.
- •Решение
- •Решение.
- •Решение
- •Решение
- •VII. Электрический ток.
- •7.1. Постоянный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •1 4. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 0. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение.
- •1 5. Определить заряд конденсатора с в схеме, представленной на рисунке. Внутренним сопротивлением батареи пренебречь.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •2 1. Найти сопротивление бесконечной цепи, построенной из одинаковых сопротивлений r.
- •Решение.
- •Решение
- •Решение
- •Решение
- •Решение
- •7.2. Мощность тока.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение
- •VIII. Электромагнетизм.
- •7.1. Сила Ампера, Лоренца.
- •7.2.Индукция.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
- •16. Сила тока в соленоиде равномерно возрастает от 0 до 10 а за 1 мин, при этом соленоид накапливает энергию 20 Дж. Какая эдс индуцируется в соленоиде?
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •7.3. Электромагнитныен колебания.
- •Решение
- •Решение
- •Решение
- •Решение.
- •Решение.
- •Решение.
- •7.4. Переменный ток.
- •Решение.
- •Решение.
- •Решение.
- •Решение
- •Решение
- •Решение.
Е.М.Елькина
Подготовка школьников к олимпиаде по физике.
I. Кинематика.
ВОПРОСЫ:
1.По какой траектории и как должна двигаться точка, чтобы пройденный ею путь равнялся модулю перемещения?
Ответ. Точка должна двигаться прямолинейно и только в одном направлении.
2.Точка а движется со скоростью 1 м/с, а точка в – со скоростью 2 м/с, причем скорость т. В все время направлена так же, как т. А. Может ли расстояние ав оставаться постоянным?
Ответ. Может. В случае, когда т. А и В движутся по двум концентрическим окружностям.
3. Во время езды на автомобиле снимали показания скорости по спидометру каждый раз, когда она изменялась. Можно ли по этим данным определить среднюю скорость автомобиля?
Ответ. Нельзя, поскольку в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей.
4. Какова (относительно земли) траектория колеблющегося на пружине грузика, помещенного в равномерно движущийся вагон?
Ответ. Синусоида или косинусоида.
5. По какой траектории движется частица в бегущей продольной волне?
Ответ. По отрезку прямой на линии , совпадающей с направлением распространения волны.
6
.
Существуют ли такие
точки движущегося вагона, которые
перемещаются не вперед, а назад? Каковы
траектории этих точек?
Ответ. Такие точки есть на реборде колеса. Траектория таких точек называется циклоидой.
7. Две материальные точки движутся по окружностям одинакового радиуса с одинаковыми по модулю ускорениями. Ускорение первой точки направлено под углом к касательной, а второй - по радиусу. У какой из этих точек модуль скорости больше?
Ответ. У второй точки центростремительное ускорение больше, значит, больше и модуль скорости.
8
.
Два шарика начали
одновременно и с одинаковой скоростью
двигаться по поверхностям, имеющим
форму, изображенную на рисунке. Как
будут отличаться скорости и времена
движения шариков к моменту их прибытия
в точку В? Трением пренебречь.
О
твет.
Скорости будут одинаковы. Время движения
второго шарика меньше. Примерные графики
скорости движения шариков приведены
на рисунке. Так как пути, пройденные
шариками равны, то, как видно из графика
(пути численно равны площадям заштрихованных
фигур), t2
<t1
.
9. Материальная точка движется по окружности радиусом 3 м. Найти путь и модуль перемещения точки за время, в течение которого радиус-вектор повернулся на 60о относительно своего первоначального положения. Начало радиус-вектора совпадает с центром окружности.
Ответ. Длина пути L = 2πR(60/360) = π ≈ 3.14 м. Модуль перемещения | s | = R = 3 м.
10. Движение материальной точки описывается уравнениями x = 10cos3t см , y = 10sin3t см. Определить вид траектории и скорость точки. Ответ. Траектория – окружность, скорость точки v = 30 см/с.
11. Движение материальной точки в данной системе отсчета описывается уравнениями x = 2 + t, y = 1 + 2t. Найти уравнение траектории. Построить траекторию на плоскости xOy. Указать положение точки при t = 0, направление и скорость движения.
Ответ. y = 2x – 3, траектория – прямая линия, скорость точки v = √5 м/с.
12. Шарик с высоты H падает на пол, отскакивает без потери скорости и поднимается на ту же высоту. Построить график зависимости ускорения, скорости и перемещения от времени. Начало системы координат расположить на полу, ось х направить вверх.
Р
ешение.
В момент удара о пол при t = τ = ( 2H/g)1/2 в течение короткого промежутка времени возникает значительное ускорение направленное вверх ( на рисунке показано условно). АВ и ВС параболы, А и С вершины парабол.
1
3.
Круг радиусом R
катится по неподвижному кругу (обкатывает)
радиуса 2R. Сколько
оборотов совершит малый круг по
возвращении в первоначальное положение?
Сколько оборотов совершит малый круг
при обкатывании внутренней поверхности
большого круга?
Ответ: n1 = 3, n2 = 1.
Угловая скорость малого круга
ω = vo/R,
где vo – скорость центра малого круга. Угловая скорость центра малого круга при его движении вокруг центра большого круга равна
Ω = vo/(3R).
Значит, когда центр малого круга совершит один оборот вокруг центра большого, сам малый круг совершит три оборота. Аналогично можно показать, что во втором случае малый круг совершит один оборот.
1
4.
Тонкая нерастяжимая нить переброшена
через блок, и к концу ее привязан груз.
Под действием груза цилиндр катится по
горизонтальной поверхности без
скольжения. Какой путь S
пройдет груз, когда цилиндр сделает
один полный оборот, если длина окружности
цилиндра L?
Ответ: S = 2L.
Нить размотается на длину, равную L. В свою очередь, цилиндр пройдет путь, также равный L. Поэтому расстояние, которое пройдет груз, равно 2L.
15. С башни по всевозможным направлениям с начальной скоростью vo , брошены камни. Оказалось, что камень, подлетевший к земле по наиболее пологой траектории, имел при подлете к ней скорость, составляющую с горизонтом угол φ. Определить высоту башни.
Ответ: H = [vo2/(2g)]tg2φ.
Решение.
Скорость любого камня при подлете к земле
v = (vo2 + 2gH)1/2 .
Камень, подлетевший по наиболее пологой траектории, имеет наибольшую горизонтальную скорость (vг)max. Но
(vг)max = vo .
Поэтому
cos φ = vo/(vo2 + 2gH)1/2 .
Отсюда
H = [vo2/(2g)]tg2φ.
