
- •Содержание
- •Глава 1 характеристики корпуса судна…………………………………..7
- •Глава 2 плавучесть судна………………………………………………..……15
- •Глава 3 начальная остойчивость судна……………………………. 26
- •Глава 4 остойчивость при больших углах крена………………….…37
- •Глава 5 нормирование остойчивости судов…………………………46
- •Глава 6 непотопляемость судна…………………………………………56
- •6.7 Обеспечение непотопляемости судов………………………………………………60
- •Глава 7 прочность корпуса судна………………………………………….65
- •Глава 8 сопротивление воды движению судна………………………80
- •Глава 9 судовые движители…………………………………………………..88
- •Глава 10 качка судов…………………………………………………………...101
- •Глава 11 управляемость судна…………………………………………….114
- •Условные обозначения основных величин
- •Глава 1 характеристики корпуса судна
- •Геометрия корпуса судна
- •Главные плоскости, система координат
- •Главные размерения и коэффициенты полноты корпуса
- •1.1.3 Теоретический чертеж судна
- •Технико — эксплуатационные характеристики судна
- •1.2.1 Весовые (массовые) характеристики судна
- •1.2.2 Объемные характеристики судна
- •1.2.3 Регистровая вместимость судов
- •1.2.4 Эксплуатационные характеристики судов
- •Глава 2 плавучесть судна
- •Силы, действующие на судно
- •Посадка судна
- •Запас плавучести и грузовая марка
- •Марки углубления и осадка судна
- •Судовая документация для расчета водоизмещения
- •Расчет водоизмещения судна
- •Изменение осадки судна при приеме и снятии груза
- •Изменение осадки судна при переходе в воду другой плотности
- •Глава 3 начальная остойчивость судна
- •Понятие остойчивости судна
- •3.2 Элементы остойчивости
- •3.3 Влияние переноса груза на посадку судна
- •3.4 Влияние на остойчивость подвешенных и жидких грузов
- •3.8 Влияние свободной поверхности жидкого груза
- •3.5 Изменение посадки и остойчивости судна при приеме и снятии груза
- •Глава 4 остойчивость при больших углах крена
- •Плечи статической остойчивости, формы и веса
- •4.2 Диаграмма статической остойчивости и ее параметры
- •Универсальные дсо (удсо)
- •Динамическая остойчивость судна и ддо
- •Решение задач о статической остойчивости на дсо
- •Решение задач о динамической остойчивости на дсо
- •Глава 5 нормирование остойчивости судов
- •Предварительный контроль остойчивости (1 этап)
- •Проверка остойчивости судна по дсо (2 этап)
- •Методы расчета критериев остойчивости судна
- •5.4 Информация об остойчивости и прочности для капитана
- •Глава 6 непотопляемость судна
- •6.1 Понятие непотопляемости судна
- •6.2 Категории затапливаемых отсеков
- •6.3 Коэффициенты проницаемости
- •6.4 Методы расчета аварийной посадки судна
- •6.5 Требования к элементам аварийной посадки и остойчивости судна
- •6.6 Информация об аварийной посадке и остойчивости судна
- •6.7 Обеспечение непотопляемости судов
- •6.8 Типовые случаи спрямление поврежденного судна
- •Глава 7 прочность корпуса судна
- •7.1. Силы и моменты, действующие на корпус судна на тихой воде
- •7.2 Дополнительные силы и моменты
- •7.3 Нормирование общей прочности по правилам рс
- •7.4 Контроль общей прочности в рейсе
- •7.4.1 Контроль прочности по приближенным формулам
- •Контроль прочности по диаграммам
- •7.4.3 Контроль прочности по судовой компьютерной программе
- •7.5 Контроль местной прочности судна
- •7.6 Судостроительные материалы
- •Глава 8 сопротивление воды движению судна
- •8.1 Понятие ходкости судна
- •8.2 Сопротивление воды и его составляющие
- •8.3 Методики расчета полного сопротивление
- •8.4 Приближенные способы определения сопротивления и буксировочной мощности
- •8.5 Методы снижения сопротивления воды
- •3) Подогревом или введением в жидкость пузырьков воздуха;
- •Глава 9 судовые движители
- •9.1 Классификация судовых движителей
- •9.2 Элементы гребного винта
- •9.3 Характеристики гребного винта
- •9.4 Режимы работы гребного винта
- •9.5 Диаграммы для расчета гребного винта
- •9.6 Взаимодействие гребного винта и корпуса судна
- •9.7 Кавитация гребных винтов
- •9.8. Совместная работа винта, двигателя и корпуса судна
- •9.9 Ходовые характеристики и паспортные диаграммы
- •Глава 10. Качка судов
- •10.1 Действующие силы и виды качки
- •10.2 Параметры и последствия качки
- •10.3 Качка судна на тихой воде
- •10.4 Качка судна на волнении
- •10.5 Качка судна на регулярном волнении
- •10.6 Влияние курса и скорости хода на качку судна
- •10.7 Нерегулярное волнение
- •10.8 Успокоители качки
- •Пассивные успокоители.
- •Активные успокоители
- •Глава 11 управляемость судна.
- •11.1 Основные понятия управляемости
- •11.2 Периоды и элементы циркуляции судна
- •11.3 Средства активного управления судном
- •Литература
9.6 Взаимодействие гребного винта и корпуса судна
Гребной винт расположенный за корпусом судна влияет на силы, действующие на корпус. а корпус в свою очередь влияет как на работу винта.
Движущийся
корпус судна увлекает за собой массы
воды, так что за ним образуется поток,
направленный в сторону движения судна.
Этот поток называется попутным
потоком.
Обозначим через
среднее значение скорости попутного
потока по диску винта, тогда скорость
винта
по отношению к скорости окружающей его
жидкости
выразится разностью :
Влияние
попутного потока учитывают в долях
скорости судна с помощью отношения
называют коэффициентом попутного потока
и
скорость винта относительно воды
запишется в виде:
Скорость
попутного потока распределена по диску
винта неравномерно Она наибольшая в
диаметральной плоскости и убывает при
удалении от нее, поэтому элементы лопасти
за время оборота работают с разными
углами атаки и разным качеством. Это
приводит к тому, что упор
и момент
за корпусом отличаются от их значений
и
в свободной воде:
где
и
–
коэффициенты влияния неравномерности
попутного потока
на упор и на момент соответственно.
Коэффициенты
и
обычно лежат в пределах:
,
.
Для приближенной оценки величины коэффициента попутного потока пользуются формулами: для одновинтовых транспортных судов с обтекаемыми рулями:
а для двухвинтовых судов
где
,
(
)-
коэффициент полноты водоизмещения
(общей полноты).
Работающий
за кормой гребной винт вызывает
подсасывание масс воды, увеличивая
скорость обтекания винта. Это вызывается
падение давления в корме и увеличение
сил трения, а на корпусе возникает
дополнительная сила
,
направленная против движения судна,
которая называется силой
засасывания.
Эту силу оценивают в долях упора,
развиваемого винтом.
Отношение
называют коэффициентом засасывания.
Таким
образом, упор винта
уравновешивает не только силу
сопротивления
,
но и силу засасывания
.
Так как
,
то на преодоление этой силы идет часть
силы
,
которая называется эффективным упором
или тягой
винта.
Коэффициент засасывания может быть оценен в долях попутного равная
где
-коэффициент
зависящий, от конструкции руля и
рудерпоста, а для двухвинтовых судов
с выкружками гребных валов или кронштейнами
гребных валов :
Теперь
можно оценить полезное действие гребного
винта, работающего за корпусом судна.
Как уже говорилось, под
пропульсивным
коэффициентом
принимается отношение буксировочной
мощности
к мощности
,
подводимой к винту:
где R - полное сопротивление;
-
скорость судна;
и
- коэффициенты влияния неравномерности
попутного потока на упор и на момент
соответственно;
T - коэффициент засасывания;
-
осевая скорость гребного винта;
n - частота вращения гребного винта;
w - коэффициент попутного потока.
Подставляя
выражения для упора
и
момента
,
после сокращения получим формулу
для пропульсивного коэффициента:
где
-коэффициент
полезного действия гребного винта;
-коэффициент
влияния корпуса
, равный
.
На
современных транспортных судах значения
пропульсивного коэффициента достигает
для одновинтовых судов
=0,7-0,8
,
а для двухвинтовых
=0,6-0,7.
При
выборе мощности ГД следует учитывать
и механические потери и тогда
.