- •Аналитическая химия Титриметрические методы анализа
- •271200 "Технология продуктов общественного питания"
- •Предисловие
- •Общие рекомендации для изучения курса
- •1. Основные понятия титриметрических методов анализа
- •2. Методы и способы титрования
- •3. Вычисление молярной массы эквивалентов
- •4. Способы выражения количественного состава растворов в титриметрии
- •4.1. Решение типовых задач на способы выражения количественного состава растворов
- •4.1.1. Расчет концентрации раствора по известным массе и объему раствора
- •4.1.1.1. Задачи для самостоятельного решения
- •4.1.2. Пересчет одной концентрации в другую
- •4.1.2.1. Задачи для самостоятельного решения
- •5. Способы приготовления растворов
- •5.1. Решение типовых задач на приготовление растворов различными способами
- •5.2. Задачи для самостоятельного решения
- •6.2. Расчет результатов обратного титрования
- •7. Метод нейтрализации (кислотно-основное титрование)
- •7.1. Примеры решения типовых задач
- •7.1.1. Прямое и заместительное титрование
- •7.1.1.1. Задачи для самостоятельного решения
- •7.1.2. Обратное титрование
- •7.1.2.1. Задачи для самостоятельного решения
- •8. Метод окисления-восстановления (редоксиметрия)
- •8.1. Задачи для самостоятельного решения
- •8.1.1. Окислительно-восстановительные реакции
- •8.1.2. Расчет результатов титрования
- •8.1.2.1. Заместительное титрование
- •8.1.2.2. Прямое и обратное титрование
- •9. Метод комплексообразования; комплексонометрия
- •Основное уравнение реакции в комплексонометрии:
- •9.1. Примеры решения типовых задач
- •9.2. Задачи для самостоятельного решения
- •10. Метод осаждения
- •10.1. Примеры решения типовых задач
- •10.2. Задачи для самостоятельного решения
- •11. Индивидуальные задания по титриметрическим методам анализа
- •11.1. План выполнения индивидуального задания
- •11.2. Варианты индивидуальных заданий
- •Ответы к задачам
- •Список рекомендуемой литературы
- •Условные обозначения
- •1. Названия некоторых кислот и их кислотных остатков
- •2. Приставки, наиболее часто употребляемые в названиях
- •3. Интерполяция справочных величин
- •Содержание
- •Аналитическая химия Титриметрические методы анализа
- •270300 "Технология хлеба, кондитерских и макаронных
- •271100 "Технология молока и молочных продуктов",
- •271200 "Технология продуктов общественного питания"
- •650056, Г. Кемерово, б-р Строителей, 47
- •650010, Г. Кемерово, ул. Красноармейская, 52
9. Метод комплексообразования; комплексонометрия
Реакцию комплексообразования можно определить как реакцию взаимодействия между ионами металла и лигандом:
Fe(NO3)2 + 6KCN → K4[Fe(CN)6] + 2KNO3.
Образование комплексных соединений или ионов происходит вследствие появления в них особой донорно-акцептор-ной, или координационной, связи. Она образуется в том случае, если у лигандов имеется неподеленная пара электронов, а у комплексообразователя - вакантные места во внешней электронной оболочке для размещения неподеленной пары электронов лиганда (вакантная орбиталь). Лиганд выступает в роли донора электронов, комплексообразователь - в роли акцептора электронов. Неподеленная пара электронов при этом обобщается, образуя координационную связь. В органических лигандах донорные атомы входят в состав функциональных групп. В аналитической химии наиболее часто используют лиганды с донорными атомами кислорода, азота, серы.
Таким образом, значительная часть свойств комплексных соединений обусловлена электронной конфигурацией центрального атома, донорными и акцепторными свойствами лигандов и природой связи между ионами металла и лигандами. Согласно координационной теории А. Вернера (1893 г.) в молекуле комплексного соединения центральное положение занимает комплексообразователь - обычно положительно заряженный ион (чаще всего металл, акцептор электронов), вокруг него в непосредственной близости расположены или координированы лиганды (доноры электронов).
Комплексообразователь вместе с лигандами образует внутреннюю координационную сферу соединения. Ионы, не связанные с лигандом, составляют внешнюю координационную сферу. Внутренняя сфера отделяется от внешней квадратными скобками. Число, показывающее, сколько лигандов присоединяет атом комплексообразователя, называют координационным числом.
K
4[Fe(CN)6]
,
внешняя сфера внутренняя сфера
где Fe2+ - ион комплексообразователя;
CN - лиганд;
6 - координационное число.
Заряд комплексного иона (z) равен алгебраической сумме зарядов комплексообразователя и лигандов. В нашем примере z = +2(Fe) – 6(CN) = –4, т.е. образовался комплексный анион.
Типичными комплексообразователями являются металлы (Ag+, Au+, Cu2+, Hg2+, Zn2+, Cd2+, Fe2+, Fe3+, Ni2+, Co2+ и др.) и неметаллы (Si4+). Любой лиганд должен содержать хотя бы один донорный атом. Поэтому лиганды представляют собой анионы или полярные молекулы, в том числе молекулы растворителя, например, в аквакомплексах. Важнейшими лигандами являются нейтральные молекулы (H2O, NH3, NO, CO) или анионы (Cl, NO3, CN, Br, I, S2O32– и др.). Каждый лиганд характеризуется дентатностью - числом донорных атомов лиганда, образующих координационные связи с центральным атомом. Лиганды, образующие только одну координационную связь, называют мо-нодентатными, две координационные связи - бидентатными, три и более - полидентатными.
Комплексных соединений очень много, и классифицируют их по различным признакам. Часто учитывают природу лигандов:
1) аквакомплексы (лиганд - молекула воды);
2) ацидокомплексы (лиганды - кислотные остатки);
3) аммиакаты и аминаты (лиганды - молекулы аммиака или аминов);
4) полигалогениды (комплексообразователь - ион галогена, а лиганды - молекула галогена, например, K[I(I2)]);
5) циклические, или хелатные (клешневидные), - имеют во внутренней сфере циклы, образуемые би- или полидентатными лигандами.
К хелатным относятся и внутрикомплексные соединения, в которых центральный атом образует связи как за счет неспаренных электронов, так и по типу донорно-акцепторного механизма. Образование внутрикомплексных соединений сопровождается вытеснением из кислотных функциональных групп одного или нескольких протонов ионом металла:
Определяемый ион тем полнее связывается в комплекс, чем прочнее, устойчивее образующееся комплексное соедине-ние. Хелатные соединения отличаются высокой прочностью, так как центральный атом в них как бы "блокирован" циклическим лигандом (рис. 9.1). Установлено, что внутрикомплексные сое-динения с пяти- и шестичленными циклами являются наиболее устойчивыми. Устойчивость комплекса зависит от природы комплексообразователя, лиганда, растворителя, температуры, ионной силы раствора.
У
стойчивость
комплексных соединений характеризуется
константой устойчивости (или образования)
β
и константой нестойкости (или распада)
1/β.
На внутреннюю и внешнюю сферу комплексное
соединение диссоциирует как сильный
электролит:
K2[HgI4] 2K+ + [HgI4]2–.
Образующийся комплексный ион диссоциирует ступенчато как слабый электролит:
[HgI4]2– [HgI3]– + I –;
[HgI3]– [HgI2] + I –;
[HgI2] [HgI]+ + I –; [HgI]+ Hg2+ + I –.
Объединенное уравнение диссоциации:
[HgI4]2– Hg2+ + 4I –.
Применяя закон действующих масс, можно записать вы-ражение для константы устойчивости комплексного соединения:
.
Общее выражение для константы нестойкости можно записать следующим образом:
.
Численные выражения констант устойчивости или нестойкости приведены в справочных таблицах [2].
Состав образующихся комплексов очень сильно зависит от условий реакции (концентрации, температуры, количественного соотношения реагентов). В случае монодентатных лигандов, как правило, образуется смесь комплексов разного состава. Это ограничивает применение таких реакций, так как обязательным условием использования реакций в титриметрическом анализе является образование продуктов с точно определенным стехиометрическим составом.
Чтобы образовался один комплекс, лиганд должен быть полидентатным, т.е. содержать несколько атомов, способных образовывать связь с комплексообразователем. Такие соединения были предложены Г. Шварценбахом в 1945 г. и были названы комплексонами. В качестве комплексонов сначала были использованы аминополикарбоновые кислоты или их производные, содержащие аминодиацетатные группы - N(CH2COOH)2, связанные с различными алифатическими или ароматическими радикалами. В настоящее время известны соединения, в которых вместо алкилкарбоксильных групп присутствуют алкилфосфоновые, алкилсульфоновые.
Метод титриметрического анализа, в котором в качестве титранта используют комплексоны, называется комплексонометрией. Комплексоны со многими ионами металлов образуют прочные внутрикомплексные соединения состава 1:1. Комплексоны настолько прочно связывают катионы металлов, что при их добавлении растворяются такие плохо растворимые вещества, как сульфаты кальция и бария, оксалаты и карбонаты кальция. Поэтому их применяют для умягчения воды, для "маскировки" ионов, мешающих реакции.
Анионы комплексона обычно обозначают символом Y с соответствующим зарядом (см. табл. 9.1).
Таблица 9.1
Наиболее часто используемые комплексоны
Комплексон |
Химическая формула |
Усл. обозначение |
Нитрилотриуксусная кислота; комплексон I |
|
H3Y |
Этилендиаминтетрауксусная кислота; ЭДТУ; комплексон II |
|
H4Y |
Динатриевая соль этилендиаминтетрауксусной кислоты; трилон Б; комплексон III; ЭДТА |
|
Na2H2Y |
Диаминциклогексантетрауксусная кислота; комплексон IV |
|
H4Y |
