Добавил:
course-as.ru Авшаров Евгений Михайлович, ejen@course-as.ru Инвестор и Технический директор ООО 'КУРС-АС1', Москва, http://www.course-as.ru, Все наиболее важное обо мне:http://www.course-as.ru/Avsharov.html Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

PS-2020a / part17

.pdf
Скачиваний:
24
Добавлен:
01.06.2020
Размер:
39.56 Mб
Скачать

DICOM PS3.17 2020a - Explanatory Information​

Page 831​

FFFF Advanced Blending Presentation State​

Storage Encoding Example (Informative)​

This section illustrates the usage of the Advanced Blending Presentation State for a functional MRI study.​

FFFF.1 Introduction​

Quantitative imaging provides measurements of physical properties, in vivo and non-invasively, for research and clinical practice.​ DICOM support for parametric maps provides a structure for organizing these results as an extension of the already widely-used​ imaging standard. The addition of color LUT support for parametric maps bridges the gap between data handling and visualization.​

AnexampleofquantitativeimaginginclinicalpracticetodayistheuseofMRI,PETandothermodalitiesinbrainmappingfordiagnostic​ assessment in pre-treatment planning for tumor, epilepsy, arterio-venous malformations (AVMs) and other conditions. MR Diffusion​ tensor imaging (DTI) results in fractional anisotropy (FA) and other parametric maps highlighting white matter structures. Task-based​ functional MRI (fMRI) highlights specific areas of eloquent cortex (gray matter) as expressed in statistical activation maps. Other​ parameters and modalities including perfusion, MR spectroscopy, and PET are often employed to locate and characterize lesions by​ means of their hyperand hypo-metabolism and -perfusion in parametric maps.​

The visualization of multiple parametric maps and sources of anatomical information in the same space requires the tools to highlight​ areas of interest (and hide irrelevant areas) in parametric maps. Two important tools provided in this supplement are thresholding of​ parametric maps by their real-world values, and blending of multiple images in a single view.​

In this example the series 2 to 5 have a lower resolution and are expected to be resampled to have the same resolution as series 1​ as this is identified as series to be used for target Geometry.​

FFFF.2 Example​

The example describes the blending of five series:​

Series 1: the anatomical series which is stored as a single volume in an Enhanced MR Image object having no Color LUT attached.​ The Image will be displayed with a Relative Opacity of 0.7.​

Figure FFFF.2-1. Anatomical image​

Series 2: the DTI series which is stored as an Enhanced MR Color Image object means that no RGB transformation is needed. The​ Image will be displayed with a Relative Opacity of 1 - 0.7.​

- Standard -​

Page 832​

DICOM PS3.17 2020a - Explanatory Information​

Figure FFFF.2-2. DTI image​

Series 3: Reading task captured in a Parametric Map with Color LUT Winter attached to it. The Image will be displayed with threshold​ range 6% to 50%. Opacity will be equal divided with the other two task maps.​

Figure FFFF.2-3. Reading task image with coloring and threshold applied​

Series 4: Listening task captured in a Parametric Map with Color LUT Fall attached to it. The Image will be displayed with threshold​ range 9% to 60%. Opacity will be equal divided with the other two task maps.​

Figure FFFF.2-4. Listening task image with coloring and threshold applied​

Series 5: Silent word generation task captured in a Parametric Map with Color LUT Spring attached to it. The Image will be displayed​ with threshold range 7% to 75%. Opacity will be equal divided with the other two task maps.​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 833​

Figure FFFF.2-5. Silent word generation task image with coloring and threshold applied​

The result of the first blending operation (FOREGROUND) will be blended with the result of the second blending operation (EQUAL)​ through a FOREGROUND blending operation with a Relative Opacity of 0.6.​

Figure FFFF.2-6. Blended result​

Figure FFFF.2-6 shows the final result with information of patient and different blended image layers. The overlay of the patient and​ layer information is not described in the object but would be application specific behavior.​

Figure FFFF.2-7. Blended result with Patient and Series information​

- Standard -​

Page 834​ DICOM PS3.17 2020a - Explanatory Information​

FFFF.3 Encoding Example​

Table FFFF.3-1. Encoding Example​

Nesting​

Attribute Name​

Tag​

Value​

Comment​

 

Advanced Blending Sequence​

(0070,1B01)​

 

 

 

%item 1​

 

 

Identifies Anatomical​

 

 

 

 

Series, no subset of series​

 

 

 

 

or registration​

>​

Blending Input Number​

(0070,1B02)​

1​

 

>​

Study Instance UID​

(0020,000D)​

"1.3.46.670589.11.3"​

 

>​

Series Instance UID​

(0020,000E)​

"1.3.46.670589.11.3.45"​

>​

Geometry for Display​

(0070,1B08)​

TRUE​

Series geometry shall be​

 

 

 

 

usedastargetgeometryfor​

 

 

 

 

the blending operation​

 

%enditem 1​

 

 

 

 

%item 2​

 

 

Identifies DTI Series, no​

 

 

 

 

subset of series is used, no​

 

 

 

 

registration present​

>​

Blending Input Number​

(0070,1B02)​

2​

 

>​

Study Instance UID​

(0020,000D)​

"1.3.46.670589.11.3"​

 

>​

Series Instance UID​

(0020,000E)​

"1.3.46.670589.11.3.49"​

>​

Geometry for Display​

(0070,1B08)​

FALSE​

Series geometry shall not​

 

 

 

 

beusedastargetgeometry​

 

 

 

 

for the blending operation​

 

%enditem 2​

 

 

 

 

%item 3​

 

 

Identifies first Parametric​

 

 

 

 

map, no registration​

>​

Blending Input Number​

(0070,1B02)​

3​

 

>​

Study Instance UID​

(0020,000D)​

"1.3.46.670589.11.3"​

 

>​

Series Instance UID​

(0020,000E)​

"1.3.46.670589.11.3.56"​

>​

Threshold Sequence​

(0070,1B11)​

 

 

>​

%item 3-1​

 

 

 

>>​

Threshold Value Sequence​

(0070,1B12)​

 

 

>>​

%item 3-1-1​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

6​

First threshold value​

>>​

%enditem 3-1-1​

 

 

 

>>​

%item 3-1-2​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

50​

Second threshold value​

>>​

%enditem 3-1-2​

 

 

 

>>​

Threshold Type​

(0070,1B13)​

RANGE_INCL​

 

>​

%enditem 3-1​

 

 

 

 

%enditem 3​

 

 

 

 

%item 4​

 

 

Identifies second​

 

 

 

 

Parametric map, no​

 

 

 

 

registration​

>​

Blending Input Number​

(0070,1B02)​

3​

 

- Standard -​

 

DICOM PS3.17 2020a - Explanatory Information​

Page 835​

Nesting​

Attribute Name​

Tag​

Value​

Comment​

>​

Study Instance UID​

(0020,000D)​

"1.3.46.670589.11.3"​

 

>​

Series Instance UID​

(0020,000E)​

"1.3.46.670589.11.3.58"​

>​

Threshold Sequence​

(0070,1B11)​

 

 

>​

%item 4-1​

 

 

 

>>​

Threshold Value Sequence​

(0070,1B12)​

 

 

>>>​

%item 4-1-1​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

9​

First threshold value​

>>​

%enditem 4-1-1​

 

 

 

>>​

%item 4-1-2​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

60​

Second threshold value​

>>​

%enditem 4-1-2​

 

 

 

>>​

Threshold Type​

(0070,1B13)​

RANGE_INCL​

 

>​

%enditem 4-1​

 

 

 

 

%enditem 4​

 

 

 

 

%item 5​

 

 

Identifies third Parametric​

 

 

 

 

map, no registration​

>​

Blending Input Number​

(0070,1B02)​

3​

 

>​

Study Instance UID​

(0020,000D)​

"1.3.46.670589.11.3"​

 

>​

Series Instance UID​

(0020,000E)​

"1.3.46.670589.11.3.59"​

>​

Threshold Sequence​

(0070,1B11)​

 

 

>​

%item 5-1​

 

 

 

>>​

Threshold Value Sequence​

(0070,1B12)​

 

 

>>​

%item 5-1-1​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

7​

First threshold value​

>>​

%enditem 5-1-1​

 

 

 

>>​

%item 5-1-2​

 

 

 

>>>​

Threshold Value​

(0070,1B14)​

75​

Second threshold value​

>>​

%enditem 5-1-2​

 

 

 

>>​

Threshold Type​

(0070,1B13)​

RANGE_INCL​

 

>​

%enditem 5-1​

 

 

 

 

%enditem 5​

 

 

 

 

Pixel Presentation​

(0008,9205)​

"TRUE_COLOR"​

 

 

Blending Display Sequence​

(0070,1B04)​

 

 

 

%item 1​

 

 

 

>​

Blending Display Input Sequence​

(0070,1B03)​

 

 

>​

%item 1-1​

 

 

Anatomical series, no​

 

 

 

 

threshold​

>>​

Blending Input Number​

(0070,1B02)​

1​

 

>​

%enditem 1-1​

 

 

 

>​

%item 1-2​

 

 

DTI series, no threshold​

>>​

Blending Input Number​

(0070,1B02)​

2​

 

>​

%enditem 1-2​

 

 

 

- Standard -​

Page 836​

DICOM PS3.17 2020a - Explanatory Information​

 

Nesting​

Attribute Name​

Tag​

Value​

Comment​

>​

Relative Opacity​

(0070,0403)​

0.7​

 

>​

Blending Mode​

(0070,1B06)​

FOREGROUND​

 

>​

Blending Input Number​

(0070,1B02)​

6​

Output is used for later​

 

 

 

 

Blending​

 

%enditem 1​

 

 

 

 

%item 2​

 

 

 

>​

Blending Display Input Sequence​

(0070,1B03)​

 

 

>​

%item 2-1​

 

 

Parametric series 1​

>>​

Blending Input Number​

(0070,1B02)​

3​

 

>​

%enditem 2-1​

 

 

 

>​

%item 2-2​

 

 

Parametric series 2​

>>​

Blending Input Number​

(0070,1B02)​

4​

 

>​

%enditem 2-2​

 

 

 

>​

%item 2-3​

 

 

Parametric series 3​

>>​

Blending Input Number​

(0070,1B02)​

5​

 

>​

End Sequence Item 2-3​

 

 

 

>​

Blending Mode​

(0070,1B06)​

EQUAL​

 

>​

Blending Input Number​

(0070,1B02)​

7​

Output is used for later​

 

 

 

 

Blending​

 

%enditem 2​

 

 

 

 

%item 3​

 

 

 

>​

Blending Display Input Sequence​

(0070,1B03)​

 

 

>​

%item 3-1​

 

 

Output first blending​

 

 

 

 

operation, no threshold​

>>​

Blending Input Number​

(0070,1B02)​

6​

 

>​

%enditem 3-1​

 

 

 

>​

%item 3-2​

 

 

Output second blending​

 

 

 

 

operation, no threshold​

>>​

Blending Input Number​

(0070,1B02)​

7​

 

>​

%enditem 3-2​

 

 

 

>​

Relative Opacity​

(0070,0403)​

0.6​

 

>​

Blending Mode​

(0070,1B06)​

FOREGROUND​

 

 

%enditem 3​

 

 

No Parametric Blending​

 

 

 

 

Input Number is present as​

 

 

 

 

this step defines the output​

 

 

 

 

to be displayed.​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 837​

GGGG Patient Radiation Dose Structured​

Report Document (Informative)​

This Annex contains examples of the use of Patient Radiation Dose templates within Patient Radiation Dose Structured Report Doc-​ uments.​

GGGG.1 Skin Dose Map Example​

The following example shows the report of the skin dose map calculated from the dose delivered during an X-Ray interventional car-​ diology procedure.​

The calculation uses a Radiation Dose SR provided by a Single Plane X-Ray Angiography equipment of the manufacturer "A". The​ Radiation Dose SR is created during one procedure step, corresponding to the coronary stenting of an adult male of 83 kg and 179​ cm height.​

The skin dose calculations are performed by an application on a separated workstation of the manufacturer "B", operated by the​ medical physicist, who is logged into the workstation at the time of the creation of the Patient Radiation Dose Structured Report doc-​ ument.​

The dose calculation application generates a Patient Radiation Dose Structured Report document and a Secondary Capture Image​ containing an image of the dose distribution over the deployed skin of the patient model.​

The dose calculation application uses the following settings and assumptions:​

•​RDSR Source Data:​

•​All the Irradiation Event UIDs are used in the calculation of the skin dose map.​

•​Patient Model:​

•​The patient model is a combination of two elliptic cylinders to represent the chest and neck of the patient.​

•​The actual dimensions of the model are determined by the age, gender, height, and weight of the patient.​

•​In this example the exact height and weight of the patient are used to create the model. The resulting elliptic cylinder for the chest​ of the model is 31 cm in the AP dimension and 74 cm in the lateral dimension.​

•​The application creates internally a 3D voxelized model that is stored in a DICOM SOP Instance.​

•​Patient Model Registration:​

•​The distance from the top of the patient's head to the head of the table (measured during the procedure) is known. The location​ of the patient head and table head are stored in a Spatial Fiducials SOP instance.​

•​The application uses fiducials to register the patient model with the data of the source Radiation Dose SR.​

•​A-priori knowledge of the distance from the table head to the system Isocenter at table zero position is calibrated offline.​

•​The table tilt, cradle, and rotation angles are ignored because the description of the acquisition geometry is incomplete in the​ Radiation Dose SR. Only table translations relative to the Isocenter are considered in the calculations.​

•​Beam Attenuators:​

•​A-priori knowledge of the model of the table and mattress (i.e., shape, dimensions, and absorption material) is calibrated offline,​ anditisreferencedinternallybytheapplication.Themodelcontainsthesamecoordinatesystemastheoneusedintheequipment​ referenced in the Radiation Dose SR, so there is no need of another registration SOP instance.​

•​The X-Ray filter information from the source Radiation Dose SR is used by the application. There is no other a-priori knowledge​ of the X-Ray filtration.​

- Standard -​

Page 838​ DICOM PS3.17 2020a - Explanatory Information​

Table GGGG.1-1. Skin Dose Map Example​

Node​

Code Meaning of Concept Name​

Code or Example Value​

Comment​

1​

Patient Radiation Dose Report​

 

TID 10030​

1.1​

Language of Content Item and​

(En, IETF4646, "English")​

TID 1204​

 

Descendants​

 

 

1.2​

Observer Type​

(121007, DCM, "Device")​

TID 1002​

1.3​

Device Observer UID​

1.2.3.4.566.1.5​

TID 1004​

1.4​

Device Observer Name​

MedPhys-01​

TID 1004​

1.5​

Device Observer Manufacturer​

Manufacturer B​

TID 1004​

1.6​

Device Observer Model Name​

Dose Workstation v1​

TID 1004​

1.7​

Observer Type​

(121006, DCM, "Person")​

TID 1002​

1.8​

Person Observer Name​

Doe^John^^Dr^PhD​

TID 1003​

1.9​

Person Observer's Role in the​

(C1708969, UMLS, "Medical​

TID 1003​

 

Organization​

Physicist")​

 

1.10​

Radiation Dose Estimate​

 

TID 10031​

1.10.1​

Radiation Dose Estimate Name​

Skin Dose Map​

TID 10031​

1.10.2​

Comment​

Single Plane XA​

TID 10031​

1.10.3​

Radiation Dose Estimate Methodology​

 

TID 10033​

1.10.3.1​

SR Instance Used​

 

Radiation Dose SR #1​

1.10.3.1.1​

SOP Class UID​

1.2.840.1008.5.1.4.1.1.88.67​

 

1.10.3.1.2​

SOP Instance UID​

1.2.3.4.566.77.1​

 

1.10.3.1.3​

Spatial Fiducials​

 

Spatial Fiducials​

1.10.3.1.3.1​

SOP Class UID​

1.2.840. 1008.5.1.4.1.1.66.2​

 

1.10.3.1.3.2​

SOP Instance UID​

1.2.3.4.44.222.33.1​

 

1.10.3.2​

Patient Radiation Dose Model​

 

TID 10033​

1.10.3.2.1​

Patient Model Type​

(128418, DCM, "Simple Object​

TID 10033​

 

 

Model")​

 

1.10.3.2.2​

Radiation Transport Model Type​

(128422,DCM,"VoxelizedRadiation​TID 10033​

 

 

Transport Model")​

 

1.10.3.2.3​

Patient Radiation Dose Model Data​

 

Parametric map​

1.10.3.1.3.1​

SOP Class UID​

1.2.840.1008.5.1.4.1.1.30​

 

1.10.3.1.3.2​

SOP Instance UID​

1.2.3.43.44.55.1​

 

1.10.3.2.4​

Patient Radiation Dose Model Reference​DOI:1.2.3.4​

TID 10033​

1.10.3.2.5​

Comment​

Combined Elliptic Cylinders​

TID 10033​

1.10.3.2.6​

Patient Model Demographics​

 

TID 10033​

1.10.3.2.6.1​

Model Minimum Age​

18 (a, UCUM, "year")​

TID 10033​

1.10.3.2.6.2​

Model Maximum Age​

90 (a, UCUM, "year")​

TID 10033​

1.10.3.2.6.3​

Model Patient Sex​

(M, DCM, "Male")​

TID 10033​

1.10.3.2.6.4​

Model Minimum Weight​

83 (kg, UCUM, "kilogram")​

TID 10033​

1.10.3.2.6.5​

Model Maximum Weight​

83 (kg, UCUM, "kilogram")​

TID 10033​

1.10.3.2.6.6​

Model Minimum Height​

179 (cm, UCUM, "Centimeter")​

TID 10033​

1.10.3.2.6.7​

Model Maximum Height​

179 (cm, UCUM, "Centimeter")​

TID 10033​

1.10.3.2.7​

Patient Model Registration​

 

TID 10033​

- Standard -​

 

DICOM PS3.17 2020a - Explanatory Information​

Page 839​

Node​

Code Meaning of Concept Name​

Code or Example Value​

Comment​

1.10.3.2.7.1​

Comment​

Distance from the top of patient's​

TID 10033​

 

 

headtotheheadofthetable=10cm​

1.10.3.2.7.2​

Registration Method​

(125022,DCM,"FiducialAlignment")​TID 10033​

1.10.3.2.7.3​

Spatial Registration​

 

Spatial Registration​

1.10.3.1.3.1​

SOP Class UID​

1.2.840. 1008.5.1.4.1.1.66.1​

 

1.10.3.1.3.2​

SOP Instance UID​

1.2.3.4.44.3.2.11​

 

1.10.3.3​

X-Ray Beam Attenuator​

 

TID 10033​

1.10.3.3.1​

Attenuator Category​

(128459, DCM, "Table")​

TID 10033​

1.10.3.3.2​

Equivalent Attenuator Material​

(256501007, SCT, "Carbon fiber")​ TID 10033​

1.10.3.3.3​

Equivalent Attenuator Thickness​

100 (mm, UCUM, "Millimeter")​

TID 10033​

1.10.3.3.4​

Attenuator Description​

X-Ray Table with Mattress​

TID 10033​

1.10.3.3.5​

X-Ray Beam Attenuator Model​

 

TID 10033​

1.10.3.3.5.1​

Radiation Transport Model Type​

(128421,DCM,"GeometricRadiation​TID 10033​

 

 

Transport Model")​

 

1.10.3.3.5.2​

X-RayBeamAttenuatorModelReference​DOI:1.4.2.3​

TID 10033​

1.10.3.4​

Radiation Dose Estimate Method​

 

TID 10033​

1.10.3.4.1​

Radiation Dose Estimate Method Type​ (128480, DCM, "Analytical​

TID 10033​

 

 

Algorithm")​

 

1.10.3.4.2​

Radiation Dose Estimate Parameters​

 

TID 10034​

1.10.3.4.2.1​

(128433, DCM, "Tissue Air Ratio")​

1.06 ({ratio}, UCUM, "ratio")​

TID 10034​

1.10.3.4.2.1.1​

RadiationDoseEstimateParameterType​(C70774, NCIt, "Unit Conversion​

TID 10034​

 

 

Factor")​

 

1.10.3.4.2.2​

(128408, DCM, "Patient AP Dimension")​31 (cm, UCUM, "Centimeter")​

TID 10034​

1.10.3.4.2.2.1​

RadiationDoseEstimateParameterType​(121206, DCM, "Distance")​

TID 10034​

1.10.3.4.2.3​

(128409, DCM, "Patient Lateral​

74 (cm, UCUM, "Centimeter")​

TID 10034​

 

Dimension")​

 

 

1.10.3.4.2.3.1​

RadiationDoseEstimateParameterType​(121206, DCM, "Distance")​

TID 10034​

1.10.3.4.2.4​

(MyCode001, 99MyScheme, "Linear​

0.010536(/cm,UCUM,"/Centimeter")​TID 10034​

 

attenuation coefficient of the table and​

 

 

 

mattress")​

 

 

1.10.3.4.3​

Radiation Dose Estimate Method​

DOI:4.2.13.4​

TID 10033​

 

Reference​

 

 

1.10.4​

Radiation Dose Estimate Representation​

TID 10032​

1.10.4.1​

Distribution Representation​

(128485, DCM, "Skin Dose Map")​

TID 10032​

1.10.4.2​

Radiation Dose Representation Data​

 

TID 10032​

1.10.4.2.1​

SOP Class UID​

1.2.840.10008.5.1.4.1.1.7​

Secondary Capture​

1.10.4.2.2​

SOP Instance UID​

1.2.3.1.2.3.3​

 

1.10.4.3​

Organ​

(181469002, SCT, "Skin")​

TID 10032​

1.10.4.4​

Comment​

2D map of the dose on the deployed​TID 10032​

 

 

skin​

 

1.10.5​

Organ Radiation Dose Information​

 

TID 10031​

1.10.5.1​

Organ​

(181469002, SCT, "Skin")​

TID 10031​

1.10.5.2​

Comment​

Skin in the area of the chest and​

TID 10031​

 

 

neck​

 

- Standard -​

Page 840​

DICOM PS3.17 2020a - Explanatory Information​

 

Node​

Code Meaning of Concept Name​

Code or Example Value​

Comment​

1.10.5.3​

(DCM, 128531, "Maximum Absorbed​

3000 (mGy, UCUM, "mGy")​

TID 10031​

 

Radiation Dose")​

 

 

1.10.5.3.1​

(371884006, SCT, "+/-, range of​

750 (mGy, UCUM, "mGy")​

TID 10031​

 

measurement uncertainty")​

 

 

1.11​

Comment​

Skin Dose Map Report​

TID 10030​

GGGG.2 Dual-source CT Organ Radiation Dose Example​

The following example shows the report of the organ dose calculated for a dual-source CT scan.​

The calculation uses a Radiation Dose SR provided by a CT system that has dual X-Ray tubes. The Radiation Dose SR is created​ during the acquisition of Neck DE_CAROTID CT scan of an adult male of 75 kg and 165 cm height.​

ThedosecalculationsareperformedontheCTsystem.ThedosecalculationapplicationgeneratesaPatientRadiationDoseStructured​ Report document and a Dose Point Cloud containing an image of the dose distribution for the patient model.​

The dose calculation application uses the following settings and assumptions:​

•​RDSR Source Data:​

•​The Irradiation Events associated with the CT Localizer Radiograph are excluded.​

•​The Irradiation Event UID from the helical CT series is used in the calculation of the organ dose.​

•​Patient Model:​

•​The patient model is a stylized anthropomorphic model of the patient.​

•​Organs are represented by simple geometric shapes described by mathematical equations. The parameters of the equations​ describing the location, shape, and dimension of the organs are stored in a DICOM SOP Instance.​

•​In this example the gender and age of the patient are used to select the appropriate phantom from the existing phantom library.​

•​Patient Model Registration:​

•​Image Content-based Alignment between the CT images Frame of Reference and the 3D stylized model Frame of Reference is​ used for registration.​

•​Beam Attenuators:​

•​Additional Aluminum filtration is used in the methodology and the equivalent HVL for the scanner model used in the method is​ given.​

Table GGGG.2-1. Dual-source CT Organ Radiation Dose Example​

Node​

Code Meaning of Concept Name​

Code or Example Value​

Comment​

1​

Patient Radiation Dose Report​

 

TID 10030​

1.1​

Language of Content Item and​

(En, IETF4646, "English")​

TID 1204​

 

Descendants​

 

 

1.1.1​

Country of Language​

(CA, ISO3166_1, "Canada")​

TID 1204​

1.2​

Observer Type​

(121007, DCM, "Device")​

TID 1002​

1.3​

Device Observer UID​

2.13.4.5.2.33.5​

TID 1004​

1.4​

Device Observer Name​

RUMC-213​

TID 1004​

1.5​

Device Observer Manufacturer​

Manufacturer DEX​

TID 1004​

1.6​

Device Observer Model Name​

Scanner 4500​

TID 1004​

- Standard -​

Соседние файлы в папке PS-2020a