Добавил:
course-as.ru Авшаров Евгений Михайлович, ejen@course-as.ru Инвестор и Технический директор ООО 'КУРС-АС1', Москва, http://www.course-as.ru, Все наиболее важное обо мне:http://www.course-as.ru/Avsharov.html Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

PS-2020a / part17

.pdf
Скачиваний:
24
Добавлен:
01.06.2020
Размер:
39.56 Mб
Скачать

DICOM PS3.17 2020a - Explanatory Information​

Page 731​

WWW Tractography Results (Informative)​

WWW.1 Introduction​

MRI diffusion imaging is able to quantify diffusion of water along certain directions. The diffusion tensor model is a simple model that​ is able to describe the statistical diffusion process accurately at most white matter positions. To calculate diffusion tensors, a base-​ lineMRIwithoutdiffusion-weightingandatleastsixdifferentlyweighteddiffusionMRIshavetobeacquired.Aftersomepreprocessing​ of the data, at each grid point, a diffusion tensor can be calculated. This gives rise to a tensor volume that is the basis for tracking.​ Refinements to the diffusion model and acquisition method such as HARDI, Q-Ball, diffusion spectrum imaging (DSI) and diffusion​ kurtosis imaging (DKI) are expanding the directionality information available beyond the simple tensor model, enhancing tracking​ through crossings, adjacent fibers, sharp turns, and other difficult scenarios.​

A tracking algorithm produces tracks (i.e., fibers), which are collected into track sets. A track contains the set of x, y and z coordinates​ ofeachpointmakingupthetrack.Dependinguponthealgorithmandsoftwareused,additionalquantitiessuchasFractionalAnisotropy​ (FA) values or color etc. may be associated with the data, by track set, track or point, either to facilitate further filtering or for clinical​ use. Descriptive statistics of quantities such as FA may be associated with the data by track set or track.​

Examples of tractography applications include:​

•​Visualization of white matter tracks to aid in resection planning or to support image guided (neuro) surgery;​

•​Determination of proximity and/or displacement versus infiltration of white matter by tumor processes;​

•​Assessment of white matter health in neurodegenerative disorders, both axonal and myelin integrity, through sampling of derived​ diffusion parameters along the white matter tracks.​

WWW.2 Encoding Example​

This section illustrates the usage of the Section C.8.33.2 “Tractography Results Module” in PS3.3 in the context of the Tractography​ Results IOD.​

 

 

C1 (6,0.1,0)

 

 

A4 (5.5,0.5,0)

A1 (0,0,0)

A2 (1.5,0.2,0)

Fa: 0.8

Fa: 0.4

A3 (3.5,-0.1,0)

Fa: 0.2

 

Fa: 0.5

ADC: 0.6

 

ADC: 0.7

 

 

C2 (5.8,-0.2,0)

B1 (0,-4,0)

B2 (2,-3.8,0)

C3 (6.2,-4.5,0)

Fa: 0.8

B3 (4,-4,0)

Fa: 0.3

ADC: 0.5

Fa: 0.9

Track Set Left Track Set Right

Figure WWW-1. Two Example Track Sets. "Track Set Left" with two tracks, "Track Set Right" with one​ track.​

Figure WWW-1 shows two example track sets. The example consists of:​ •​Two track sets "Track Set Left" and "Track Set Right"​

•​Track Set Sequence (0066,0101) => each item describes one track set.​ •​Track Set "Track Set Left" contains two tracks "A" and "B"​

•​Track Sequence (0066,0102) => each item describes one track.​

- Standard -​

Page 732​

DICOM PS3.17 2020a - Explanatory Information​

•​Track "A" consists of:​

•​4 points​

•​Point Coordinates Data (0066,0016) => describes the coordinates for all points in the track.​

•​Different color for each point​

•​Recommended Display CIELab Value List (0066,0103) => describes the colors for all points in the track.​

•​Fractional Anisotropy for each point​

•​On how the values are stored, see description in "Encoding of Measurement Values" below.​

•​Apparent Diffusion Coefficient for point 1 and 3​

•​On how the values are stored, see description in "Encoding of Measurement Values" below.​

•​Track "B" consists of:​

•​3 points​

•​Point Coordinates Data (0066,0016) => describes the coordinates for all points in the track.​

•​Same color for each point​

•​Recommended Display CIELab Value (0062,000D) => describes the color for all points in the track.​

•​Fractional Anisotropy for each point​

•​On how the values are stored, see description in "Encoding of Measurement Values" below.​

•​Apparent Diffusion Coefficient for point 2​

•​On how the values are stored, see description in "Encoding of Measurement Values" below.​

•​Encoding of Measurement Values for Tracks "A" and "B"​

•​For storing measurement values like Fractional Anisotropy or Apparent Diffusion Coefficient values on specific points on a track​ the overall view over all tracks of a given track set is needed. Only tracks shall be grouped in track sets that share a specific type​ of measurement value.​

•​Measurements Sequence (0066,0121) => each item describes one value type of all tracks in the track set (here: "Track Set Left"​ contains two value types: Fractional Anisotropy and Apparent Diffusion Coefficient).​

•​Measurement Values Sequence (0066,0132) => one item for each track of a track set.​

•​When used to store Fractional Anisotropy values:Since a Fractional Anisotropy value is stored for each point in both tracks of​ "Track Set Left", Floating Point Values (0066,0125) contains an array of Fractional Anisotropy values for tracks "A" and "B"​ respectively. Track Point Index List (0066,0129) is absent since there is a Fractional Anisotropy value associated with every​ point in Point Coordinates Data (0066,0016).​

•​When used to store Apparent Diffusion Coefficient values:Since an Apparent Diffusion Coefficient value is stored only for a​ subset of points in both tracks of "Track Set Left", Track Point Index List (0066,0129) contains indices to the track points in​ Point Coordinates Data (0066,0016) and Floating Point Values (0066,0125) contains a measurement value for every track​ point referenced in Track Point Index List (0066,0129).​

•​Track Set "Track Set Right" contains one track "C"​

•​Track "C" consists of:​

•​3 points​

•​Point Coordinates Data (0066,0016) => describes the coordinates for all points in the track.​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 733​

•​Same color for all points​

•​Recommended Display CIELab Value (0062,000D) => describes the color for all points in the track set (Note: In this example​ this Attribute is stored on Track Set level).​

•​No measurement values​

The table WWW-1 shows the encoding of the Tractography Results module for the example above. In addition to the two example​ track sets the table WWW-1 also encodes the following information:​

•​Within "Track Set Left" the mean Fractional Anisotropy values for track "A" (0.475) and "B" (0.667).​

•​For "Track Set Left" the maximum Fractional Anisotropy value (0.9).​

•​Diffusion acquisition, model and tracking algorithm information.​

•​Image instance references used to define the Tractography Results instance.​

Table WWW-1. Example of the Tractography Results Module​

Name​

Tag​

Value​

Comment​

Instance Number​

(0020,0013)​

1​

 

Content Label​

(0070,0080)​

Left and Right​

 

Content Description​

(0070,0081)​

Two Sample Tracksets​

 

Content Creator's Name​

(0070,0084)​

<empty>​

Type 2 Attribute​

Content Date​

(0008,0023)​

20150529​

 

Content Time​

(0008,0033)​

121933.000000​

 

Track Set Sequence​

(0066,0101)​

 

 

Item 1 (First Track Set "Track Set Left")​

 

 

 

>Track Set Number​

(0066,0105)​

1​

 

>Track Set Label​

(0066,0106)​

Track Set Left​

 

>Track Set Anatomical Type Code Sequence​

(0066,0108)​

 

 

>>Code Sequence Macro Values​

(0008,0100)​

(389080008, SCT, "White​CID 7710​

 

(0008,0102)​

matter of brain and spinal​

 

cord")​

 

 

(0008,0104)​

 

 

>>Modifier Code Sequence​

(0040,A195)​

 

 

Item 1​

 

 

 

>>>Code Sequence Macro Values​

…​

(7771000, SCT, "Left")​

CID 244​

>Track Sequence​

(0066,0102)​

 

 

Item 1 (First Track "A")​

 

 

 

>>Point Coordinates Data​

(0066,0016)​

0, 0, 0​

Coordinates of​

 

 

1.5, 0.2, 0​

A1, A2, A3, A4​

 

 

 

3.5,

-0.1, 0​

5.5,

0.5, 0​

- Standard -​

Page 734​

DICOM PS3.17 2020a - Explanatory Information​

 

Name​

 

Tag​

Value​

Comment​

 

>>Recommended Display CIELab Value​(0066,0103)​

47270/40385/52501/​

ColorsofA1,A2,​

 

List​

 

34751/53214/49924/​

A3, A4​

 

 

 

 

 

 

 

57318/11632/54042​

 

 

 

 

22077/53113/5901/​

 

 

Item 2 (Second Track "B")​

 

 

 

 

>>Point Coordinates Data​

(0066,0016)​

0, -4, 0​

Coordinates of​

 

 

 

2,-3.8, 0​

B1, B2, B3​

 

 

 

 

 

 

 

4,-4, 0​

 

 

>>Recommended Display CIELab Value​(0062,000D)​

57318/11632/54042​

Color of B1, B2,​

 

 

 

 

B3​

>Measurements Sequence​

(0066,0121)​

 

 

 

Item 1 (Fractional Anisotropy (FA) values stored on each Track)​

 

 

>>Concept Name Code Sequence​

(0040,A043)​

 

 

 

>>>Code Sequence Macro Values​

…​

(110808,DCM,"Fractional​CID 7263​

 

 

 

Anisotropy")​

 

 

>>Measurement Units Code Sequence​ (0040,08EA)​

 

 

 

>>>Code Sequence Macro Values​

…​

(1, UCUM, "no units")​

CID 82​

 

>>Measurement Values Sequence​

(0066,0132)​

 

 

 

Item 1 (FA Values for each point on first Track "A")​

 

 

>>>Floating Point​

(0066,0125)​

0.2,0.4,0.5,0.8​

FA values of A1,​

 

Values​

 

 

A2, A3, A4​

 

Item 2 (FA Values for each point on second Track "B")​

 

 

>>>Floating Point​

(0066,0125)​

0.3, 0.8, 0.9​

FA values of B1,​

 

Values​

 

 

B2, B3​

 

Item 2 (Apparent Diffusion Coefficient (ADC) values stored on each Track)​

 

 

>>Concept Name Code Sequence​

(0040,A043)​

 

 

 

>>>Code Sequence Macro Values​

…​

(113041, DCM, "Apparent​CID 7263​

 

 

 

Diffusion Coefficient")​

 

 

>>Measurement Units Code Sequence​ (0040,08EA)​

 

 

 

>>>Code Sequence Macro Values​

…​

(1, UCUM, "no units")​

CID 82​

 

>>Measurement Values Sequence​

(0066,0132)​

 

 

Item 1 (ADC Values stored on 1st and 3rd point of first Track "A")​

 

 

>>>Floating Point​(0066,0125)​

0.6,0.7​

ADC​

Values​

 

 

values​

 

 

 

of A1​

 

 

 

and​

 

 

 

A3​

>>>TrackPointIndex​(0066,0129)​

1, 3​

 

 

List​

 

 

 

Item 2 (ADC Values stored on 2nd point of second Track "B")​

 

 

>>>Floating Point​ (0066,0125)​

0.5​

ADC value of B2​

Values​

 

 

 

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 735​

Name​

Tag​

Value​

Comment​

>>>TrackPointIndex​(0066,0129)​

2​

 

List​

 

 

 

>Track Statistics Sequence​

(0066,0130)​

 

Statistical values​

 

 

 

derived from​

 

 

 

each Track​

Item 1 (Mean FA values for Tracks "A" and "B")​

 

 

>>Concept Name Code Sequence​

(0040,A043)​

 

 

>>>Code Sequence Macro Values​

…​

(110808,DCM,"Fractional​CID 7263​

 

 

Anisotropy")​

 

>>Modifier Code Sequence​

(0040,A195)​

 

 

>>>Code Sequence Macro Values​

…​

(373098007, SCT,​

CID3488(partof​

 

 

"Mean")​

CID 7464)​

>>Measurement Units Code Sequence​ (0040,08EA)​

 

 

>>>Code Sequence Macro Values​

…​

(1, UCUM, "no units")​

CID 82​

>>Floating Point Values​

(0066,0125)​

0.475, 0.667​

 

>Track Set Statistics Sequence​

(0066,0124)​

 

Statistical values​

 

 

 

derived from​

 

 

 

whole track set​

Item 1 (Maximum FA value of whole Track Set "Track Set Left")​

 

>>Concept Name Code Sequence​

(0040,A043)​

 

 

>>>Code Sequence Macro Values​

…​

(110808,DCM,"Fractional​CID 7263​

 

 

Anisotropy")​

 

>>Modifier Code Sequence​

(0040,A195)​

 

 

>>>Code Sequence Macro Values​

…​

(56851009, SCT,​

CID3488(partof​

 

 

"Maximum")​

CID 7464)​

>>Measurement Units Code Sequence​ (0040,08EA)​

 

 

>>>Code Sequence Macro Values​

…​

(1, UCUM, "no units")​

CID 82​

>>Floating Point Value​

(0040,A161)​

0.9​

 

>Diffusion Acquisition Code Sequence​

(0066,0133)​

 

 

>>Code Sequence Macro Values​

…​

(113223, DCM, "DTI")​

CID 7260​

>Diffusion Model Code Sequence​

(0066,0134)​

 

 

>>Code Sequence Macro Values​

…​

(113231, DCM, "Single​

CID 7261​

 

 

Tensor")​

 

>Tracking Algorithm Identification Sequence​

(0066,0104)​

 

 

Item 1​

 

 

 

>>Algorithm Family Code Sequence​

(0066,002F)​

 

 

>>>Code Sequence Macro Values​

…​

(113211, DCM,​

CID 7262​

 

 

"Deterministic")​

 

>>Algorithm Name​

(0066,0036)​

Example​

 

>>Algorithm Version​

(0066,0031)​

1.0​

 

Item 2 (Second Track Set "Track Set Right")​

 

 

 

>Track Set Number​

(0066,0105)​

2​

 

>Track Set Label​

(0066,0106)​

Track Set Right​

 

>Track Set Anatomical Type Code Sequence​

(0066,0108)​

 

 

- Standard -​

Page 736​

DICOM PS3.17 2020a - Explanatory Information​

 

Name​

 

Tag​

Value​

Comment​

>>Code Sequence Macro Values​

 

(0008,0102)​

(389080008, SCT, "White​CID 7710​

 

 

(0008,0100)​

matter of brain and spinal​

 

 

cord")​

 

 

 

(0008,0104)​

 

 

>>Modifier Code Sequence​

 

(0040,A195)​

 

 

Item 1​

 

 

 

 

>>>Code Sequence Macro Values​

…​

(24028007, SCT, "Right")​CID 244​

>Track Sequence​

 

(0066,0102)​

 

 

Item 1 (Single Track "C")​

 

 

 

>>Point Coordinates Data​

(0066,0016)​

6, 0.1, 0​

Coordinates of​

 

 

 

5.8, -2, 0​

C1, C2, C3​

 

 

 

 

 

 

 

6.2, -4.5, 0​

 

>Recommended Display CIELab Value​

(0062,000D)​

34751/53214/49924/​

Color of C1, C2,​

 

 

 

 

C3​

>Diffusion Acquisition Code Sequence​

(0066,0133)​

 

 

>>Code Sequence Macro Values​

 

…​

(113223, DCM, "DTI")​

CID 7260​

>Diffusion Model Code Sequence​

 

(0066,0134)​

 

 

>>Code Sequence Macro Values​

 

…​

(113231, DCM, "Single​

CID 7261​

 

 

 

Tensor")​

 

>Tracking Algorithm Identification Sequence​

(0066,0104)​

 

 

Item 1​

 

 

 

 

>>Algorithm Family Code Sequence​

(0066,002F)​

 

 

>>>Code Sequence Macro Values​

…​

(113211, DCM,​

CID 7262​

 

 

 

"Deterministic")​

 

>>Algorithm Name​

 

(0066,0036)​

Example​

 

>>Algorithm Version​

 

(0066,0031)​

1.0​

 

Referenced Instance Sequence​

 

(0008,114A)​

 

 

Item 1​

 

 

 

 

>Referenced SOP Class UID​

 

…​

1.2.840.10008.5.1.4.1.1.4​MR Image​

 

 

 

 

Storage​

>Referenced SOP Instance UID​

 

…​

1.2.3.4.1​

 

Item 2​

 

 

 

 

>Referenced SOP Class UID​

 

…​

1.2.840.10008.5.1.4.1.1.4​MR Image​

 

 

 

 

Storage​

>Referenced SOP Instance UID​

 

…​

1.2.3.4.2​

 

…​

 

 

 

 

Item n​

 

 

 

 

>Referenced SOP Class UID​

 

…​

1.2.840.10008.5.1.4.1.1.4​MR Image​

 

 

 

 

Storage​

>Referenced SOP Instance UID​

 

…​

1.5.6.1​

 

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 737​

XXX Volumetric Presentation States​ (Informative)​

XXX.1 Scope of Volumetric Presentation States​

Volume data may be presented through a variety of display algorithms, such as frame-by-frame viewing, multi-planar reconstruction,​ surface rendering and volume rendering. The Volumetric Source Information consists of one or more volumes (3D or 4D) used to​ form the presentation. When a volume Presentation View is created through the use of a Display Algorithm, it typically requires a set​ of Display Parameters that determine the specific presentation to be obtained from the volume data. Persistent storage of the Display​ ParametersusedbyaDisplayAlgorithmtoobtainapresentationfromasetofvolume-relateddataiscalledaVolumetricPresentation​ State (VPS):​

Volumetric

Display

Presentation

 

Source

 

Algorithm

(View)

 

Information

 

 

 

 

 

Display Parameters

Presentation State

Persistent

 

Storage

 

 

 

Figure XXX.1-1. Scope of Volumetric Presentation States​

Each Volumetric Presentation State describes a single view with optional animation parameters. A Volumetric Presentation State​ may also indicate that a particular view is intended to be displayed alongside the views from other Volumetric Presentation States.​ However, descriptions of how multiple views should be presented are not part of a Volumetric Presentation State and should be​ specified by a Structured Display, a Hanging Protocol or by another means.​

TheresultofapplicationofaVolumetricPresentationStateisnotexpectedtobeexactlyreproducibleondifferentsystems.Itisdifficult​ to describe the rendering algorithms in enough detail in an interoperable manner, such that a presentation produced at a later time​ is indistinguishable from that of the original presentation. While Volumetric Presentation States use established DICOM concepts of​ grayscaleandcolormatching(GSDFandICCcolorprofiles)andprovidesagenericdescriptionofthedifferenttypesofdisplayalgorithms​ possible, variations in algorithm implementations within display devices are inevitable and an exact match of volume presentation on​ multiple devices cannot be guaranteed. Nevertheless, reasonable consistency is provided by specification of inputs, geometric de-​ scriptions of spatial views, type of processing to be used, color mapping and blending, input fusion, and many generic rendering​ parameters, producing what is expected to be a clinically acceptable result.​

XXX.1.1 Volumetric Presentation States vs. Softcopy Presentation States​

A Volumetric Presentation State is different from Softcopy Presentation States in several ways:​

1.​Unlike Softcopy Presentation States, a Volumetric Presentation State describes the process of creating a new image rather than​ parameters for displaying an existing one​

2.​Volumetric Presentation State may not be displayed exactly the same way by all display systems due to differences in the imple-​ mentations of rendering algorithms.​

XXX.1.2 Image Creation Process​

While both Volumetric Presentation States and Softcopy Presentation States reference source images, a display application applying​ a Volumetric Presentation State will not directly display the source images. Instead, it will use the source data to construct a volume​ and then create a new view of the volume data to be displayed. Depending on the specific Volumetric Presentation State parameters,​ it is possible that some portion of the inputs may not contribute to the generated view.​

- Standard -​

Page 738​

DICOM PS3.17 2020a - Explanatory Information​

XXX.1.3 Volumetric Presentation State Display Consistency​

Some types of volumetric views may be significantly influenced by the hardware and software used to create them, and the industry​ has not yet standardized the volume rendering pipelines to any great extent.​

Whilevolumegeometryisconsistent,otherdisplaycharacteristicssuchascolor,tissueopacityandlightingmayvaryslightlybetween​ display systems.​

The use of the Rendered Image Reference Sequence (0070,1104) to associate the Volumetric Presentation State with a static ren-​ dering of the same view is encouraged to facilitate the assessment of the view consistency (see Section XXX.2.3).​

XXX.2 Volumetric Presentation States vs. Static Derived Images​

A Volumetric Presentation State creator is likely to be capable of also creating a derived static image (such as a secondary capture​ image)representingthesameview.Dependingontheusecase,eitheraVolumetricPresentationStateoraSecondaryCaptureimage​ or both may be preferred.​

XXX.2.1 Static Derived Images​

Static derived images are intended for direct viewing, and have the following advantages:​

•​supported by a wide variety of viewers​

•​minimal display consistency issues - particularly when paired with a Softcopy Display Presentation State​

•​no volumetric processing is required​

and the following disadvantages​

•​cannot be used to re-create the view from the volume data and then interactively manipulate the view​

•​dynamic views may require the creation of a large number of individual instances​

XXX.2.2 Volumetric Presentation States​

Volumetric Presentation States have the following advantages:​

•​can be used to re-create the view and allow interactive creation of additional views​

•​supporting artifacts, such as Segmentation instances, are preserved and can be re-used​

•​allowscollaborationbetweendissimilarclinicalapplications(e.g.,aradiologyapplicationcouldcreateaviewtobeusedasastarting​ point for a surgical planning application)​

•​measurements and annotations can be linked to machine-readable structured context to allow integration with reporting and ana-​ lysis applications​

•​compact representation of dynamic views​

and the following disadvantages:​

•​not yet supported by legacy systems​

•​consistency of presentation may vary​

•​requires access to the original volumetric data and any associated objects (such as segmentation or spatial registration instances)​

XXX.2.3 Both Volumetric Presentation States and Linked Static Images​

A Volumetric Presentation State (VPS) creator can create a static derived image at the same time and link it to the VPS by using the​ RenderedImageReferenceSequence(0070,1104).Thisapproachyieldsmostoftheadvantagesoftheindividualformats.Additionally,​ it allows the static images to be used to assess the display consistency of the view.​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 739​

This approach also allows for a staged review where the static image is reviewed first and the Volumetric Presentation State is only​ processed if further interactivity is needed.​

The main disadvantage to this approach is that it may add a significant amount of data to an imaging study.​

XXX.3 Use Cases​

This section includes examples of volumetric views and how they can be described with the Volumetric Presentation States to allow​ recreation of those views on other systems. The illustrated use cases are examples only and are by no means exhaustive.​

Each use case is structured in three sections:​

1.​User Scenario: Describes the user needs in a specific clinical context, and/or a particular system configuration and equipment​ type.​

2.​Encoding Outline: Describes the Volumetric Presentation States related to this scenario, and highlights key aspects.​

3.​Encoding Details: Provides detailed recommendations of the key Attributes of the Volumetric Presentation States to address this​ particular scenario. The tables are similar to the IOD tables of PS3.3. Only Attributes with specific recommendation in this partic-​ ular scenario have been included.​

XXX.3.1 Simple Planar MPR View​

XXX.3.1.1 User Scenario​

A grayscale planar MPR view created from one input volume without cropping is the most basic application of the Planar MPR VPS.​

XXX.3.1.2 Encoding Outline​

To create this view, the Volumetric Presentation State Relationship Module refers to one input volume, and uses the Volumetric​ Presentation State Display Module with a minimum set of Attributes, generating this simple pipeline:​

Scalar value

VOI LUT

Scalar value

MPR Slicing

Scalar value

Presentation LUT

P-Values

 

 

 

 

 

 

 

Figure XXX.3.1-1. Simple Planar MPR Pipeline​

The parameters for computing the Multi-Planar Reconstruction are defined in the Multi-Planar Reconstruction Geometry Module.​

XXX.3.1.3 Encoding Details​

XXX.3.1.3.1 Volumetric Presentation State Relationship Module Recommendations​

Table XXX.3.1-1. Volumetric Presentation State Relationship Module Recommendations​

Attribute Name​

Tag​

Comment​

VolumetricPresentationStateInputSequence​

(0070,1201)​

Set one item in this sequence.​

>Presentation Input Type​

(0070,1202)​

Set to "VOLUME".​

>Referenced Image Sequence​

(0008,1140)​

Set reference(s) to the image(s) that make up the​

 

 

input volume.​

>Window Center​

(0028,1050)​

Set either Window Center and Window Width or VOI​

 

 

LUT Sequence (0028,3010).​

>Window Width​

(0028,1051)​

 

>Crop​

(0070,1204)​

Set to "NO".​

- Standard -​

Page 740​

DICOM PS3.17 2020a - Explanatory Information​

XXX.3.1.3.2 Volumetric Presentation State Display Module Recommendations​

Table XXX.3.1-2. Volumetric Presentation State Display Module Recommendations​

Attribute Name​

Tag​

Comment​

Pixel Presentation​

(0008,9205)​

Set to "MONOCHROME"​

Presentation LUT Shape​

(2050,0020)​

Set to "IDENTITY" or "INVERSE"​

XXX.3.2 Spatially Related Views (e.g., Orthogonal)​

XXX.3.2.1 User Scenario​

Planar MPR views are often displayed together with other spatially related Planar MPR views. For example, a very common setup​ are three orthogonal MPRs showing a lesion in transverse, coronal and sagittal views of the data.​

Figure XXX.3.2-1. Three orthogonal MPR views. From left to right transverse, coronal, sagittal​

XXX.3.2.2 Encoding Outline​

The storage of the view shown in Figure XXX.3.2-1 requires the generation of three Planar MPR VPS SOP instances and normally​ a Basic Structured Display SOP instance which references the Planar MPR VPS SOP instances.​

InordertoenabledisplayapplicationswhichdonotsupporttheBasicStructuredDisplaySOPClasstocreatesimilarviewsofmultiple​ related Planar MPRs the Planar MPR VPS SOP Class supports marking instances as spatially related in the Volumetric Presentation​ State Identification Module.​

This allows display applications to identify Volumetric Presentation State instances for viewing together. Additionally, via the View​ Modifier Code Sequence (0054, 0222) in the Presentation View Description Module, display applications can determine which Volu-​ metricPresentationStateinstancetoshowatwhichpositiononthedisplaydependingontheuserpreferences.RefertoSectionXXX.4​ for display layout considerations.​

XXX.3.2.3 Encoding Details​

XXX.3.2.3.1 Volumetric Presentation State Identification Module Recommendations​

Table XXX.3.2-1. Volumetric Presentation State Identification Module Recommendations​

Attribute Name​

Tag​

Comment​

Presentation Display Collection UID​

(0070,1101)​

Set to the same UID in all three Planar MPS VPS SOP​

 

 

Instances.​

- Standard -​

Соседние файлы в папке PS-2020a