
- •Содержание
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели
- •4. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •5. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений.
- •6.Гетероскедастичность случайного возмущения. Причины.
- •7.Динамическая модель из одновременных линейных уравнений (привести пример)
- •8.Идентификация отдельных уравнений системы одновременных уравнений: порядковое условие.
- •Необходимое условие идентифицируемости
- •9. Индивидуальная оценка значения зависимой переменной
- •10. Интервальная оценка индивидуального значения зависимой переменной
- •11.Классическая парная регрессионная модель. Спецификация модели.
- •12.Коэффициент детерминации в регрессионной модели.
- •13.Ковариация, коэффициент корреляции и индекс детерминации.
- •14.Количественные характеристики взаимосвязи пары случайных переменных
- •15.Коэффициент корреляции и индекс детерминации.
- •16.Линейная модель множественной регрессии
- •17.Метод наименьших квадратов: алгоритм метода; условия применения
- •18.Метод показателей информационной ёмкости
- •19.Методы подбора переменных в модели множественной регрессии
- •20.Методы сглаживания временного ряда.
- •21, 52. Модели временных рядов
- •22.Модели с бинарными фиктивными переменными
- •23.Модели с частичной корректировкой
- •24.Настройка модели с системой одновременных уравнений.
- •25, 26. Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов
- •27.Нормальный закон распределения как характеристика случайной переменной
- •28.Обобщённый метод наименьших квадратов
- •29, 30. Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение
- •31. Определение соответствия распределения случайных возмущений нормальному закону распределения
- •32. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели.
- •33.Отражение в модели влияния неучтённых факторов
- •34.Отражение в эконометрических моделях фактора времени
- •35, 36, 45.Оценивание линейной модели множественной регрессии в Excel
- •37.Оценивание регрессионной модели с фиктивной переменной наклона
- •38.Оценка коэффициентов модели Самуэльсона-Хикса
- •39. Оценка параметров множественной регрессионной модели методом наименьших квадратов
- •40. Оценка параметров парной регрессионной модели методом наименьших квадратов
- •41. Оценка статистической значимости коэффициентов модели множественной регрессии.
- •Ситуации
- •42. Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •43. Подбор переменных в модели множественной регрессии методом «снизу вверх»
- •44. Подбор переменных в модели множественной регрессии методом исключения переменных («сверху вниз»).
- •46. Последствия гетероскедастичности. Тест gq
- •47. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •48. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных
- •49. Принципы спецификации эконометрических моделей и их формы
- •50. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •51. Прогнозирование экономических переменных. Проверка адекватности модели
- •53.Регрессионные модели с фиктивными переменными.
- •54.Свойства временных рядов
- •55.Составление спецификации модели временного ряда.
- •56, 57. Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам.
- •58.Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •59.Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •60.Статистические свойства оценок параметров парной регрессионной модели
- •61.Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •62.Схема Гаусса – Маркова
- •63.Теорема Гаусса-Маркова
- •64. Тест ошибочной спецификации Рамсея.
- •Тест Стьюдента
- •66, 67. Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •68. Устранение автокорреляции в парной регрессии
- •69. F-тест качества спецификации множественной регрессионной модели.
- •70. Фиктивная переменная наклона: назначение; спецификация
- •71.Функция регрессии как оптимальный прогноз
- •72.Характеристики сервиса «Описательная статистика».
- •73. Метод наибольшего прадоподобия
- •Последовательность решения:
- •74. Что такое стационарный процесс
- •75. Эконометрика, её задача и метод.
- •76.Экспоненциальное сглаживание временного ряда
- •77. Этапы построения эконометрических моделей
- •78. Этапы решения экономико-математических задач.
4. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
Гипотеза(1):
Шаг 1.
Уравнения наблюдений объекта
следует упорядочить по возрастанию
суммы модулей значений предопределенных
переменных модели (2),
т.е. по возрастанию значений
Шаг 2.
По первым
упорядоченным уравнениям наблюдений
объекта вычислить МНК-оценки параметров
модели и величину
где
- МНК-оценка случайного возмущения
Шаг 3.
По последним
упорядоченным
уравнениям наблюдений вычислить
МНК-оценки параметров модели и величинуESS,
которую обозначим
Шаг 4. Вычислить
статистику
.
Шаг 5.
Задаться уровнем значимости
и с помощью функцииFРАСПОБР
Excel
при количествах степеней свободы
,
где
определить (1-
-квантиль,
распределения Фишера.
Шаг 6. Принять гипотезу (1), если справедливы неравенства
Т.е. при справедливых неравенствах случайный остаток в модели (2) полагать гомоскедастичными. В противном случае гипотезу (1) отклонить как противоречащую реальным данным и сделать вывод о гетероскедастичности случайного остатка в модели (2).
5. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений.
Гипотеза (1):
Шаг 1.
По уравнениям наблюдений объекта
следует вычислить МНК-оценки и оценки
случайных остатков.
Шаг 2.
Вычислить величину
Шаг 3.
Из таблицы, составленной Дарбиным и
Уотсоном, по количеству n
уравнений наблюдений и количеству k
объясняющих переменных следует выбрать
две величины
Шаг 4.
Проверить, в какое из пяти подмножеств
интервала (0,4) попала величинаDW.
Сделать вывод о присутствии/отсутствии
автокорреляции.
Если попало в -, то автокорреляция присутствует
Если попало в +, то автокорреляция отсутствует
Если попало в ///, то зона неопределенности.
6.Гетероскедастичность случайного возмущения. Причины.
Гетероскедастичность - ситуация, когда дисперсия ошибки в уравнении регрессии изменяется от наблюдения к наблюдению. В этом случае приходится подвергать определенной модификации МНК (иначе возможны ошибочные выводы). Для обнаружения гетероскедастичности обычно используют 3 теста: тест ранговой корреляции Спирмена, тест Голдфеда - Квандта и тест Глейзера Доугерти.
Гетероскедастичность случайных возмущений – возмущения обладают различными дисперсиями r2i=r2wi, но не коррелированны друг с другом.
Причина: При гетероскедастичности распределение u для каждого наблюдения имеет нормальное распределение и нулевое ожидание, но дисперсия распределений различна.
Последствия нарушения условия гомоскедастичности случайных возмущений:
1. Потеря эффективности оценок коэффициентов регрессии, т.е. можно найти другие, отличные от Метода Наименьших Квадратов и более эффективные оценки
2. Смещенность стандартных ошибок коэффициентов в связи с некорректностью процедур их оценки
7.Динамическая модель из одновременных линейных уравнений (привести пример)
Экономические модели, значения переменных которых привязаны к моменту времени, называются динамическими.
Примером системы одновременных уравнений может служить модель спроса и предложения, включающая три уравнения: И еще один пример рядом.