
- •Содержание
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели
- •4. Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •5. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений.
- •6.Гетероскедастичность случайного возмущения. Причины.
- •7.Динамическая модель из одновременных линейных уравнений (привести пример)
- •8.Идентификация отдельных уравнений системы одновременных уравнений: порядковое условие.
- •Необходимое условие идентифицируемости
- •9. Индивидуальная оценка значения зависимой переменной
- •10. Интервальная оценка индивидуального значения зависимой переменной
- •11.Классическая парная регрессионная модель. Спецификация модели.
- •12.Коэффициент детерминации в регрессионной модели.
- •13.Ковариация, коэффициент корреляции и индекс детерминации.
- •14.Количественные характеристики взаимосвязи пары случайных переменных
- •15.Коэффициент корреляции и индекс детерминации.
- •16.Линейная модель множественной регрессии
- •17.Метод наименьших квадратов: алгоритм метода; условия применения
- •18.Метод показателей информационной ёмкости
- •19.Методы подбора переменных в модели множественной регрессии
- •20.Методы сглаживания временного ряда.
- •21, 52. Модели временных рядов
- •22.Модели с бинарными фиктивными переменными
- •23.Модели с частичной корректировкой
- •24.Настройка модели с системой одновременных уравнений.
- •25, 26. Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов
- •27.Нормальный закон распределения как характеристика случайной переменной
- •28.Обобщённый метод наименьших квадратов
- •29, 30. Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение
- •31. Определение соответствия распределения случайных возмущений нормальному закону распределения
- •32. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели.
- •33.Отражение в модели влияния неучтённых факторов
- •34.Отражение в эконометрических моделях фактора времени
- •35, 36, 45.Оценивание линейной модели множественной регрессии в Excel
- •37.Оценивание регрессионной модели с фиктивной переменной наклона
- •38.Оценка коэффициентов модели Самуэльсона-Хикса
- •39. Оценка параметров множественной регрессионной модели методом наименьших квадратов
- •40. Оценка параметров парной регрессионной модели методом наименьших квадратов
- •41. Оценка статистической значимости коэффициентов модели множественной регрессии.
- •Ситуации
- •42. Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •43. Подбор переменных в модели множественной регрессии методом «снизу вверх»
- •44. Подбор переменных в модели множественной регрессии методом исключения переменных («сверху вниз»).
- •46. Последствия гетероскедастичности. Тест gq
- •47. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
- •48. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных
- •49. Принципы спецификации эконометрических моделей и их формы
- •50. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •51. Прогнозирование экономических переменных. Проверка адекватности модели
- •53.Регрессионные модели с фиктивными переменными.
- •54.Свойства временных рядов
- •55.Составление спецификации модели временного ряда.
- •56, 57. Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам.
- •58.Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •59.Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •60.Статистические свойства оценок параметров парной регрессионной модели
- •61.Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •62.Схема Гаусса – Маркова
- •63.Теорема Гаусса-Маркова
- •64. Тест ошибочной спецификации Рамсея.
- •Тест Стьюдента
- •66, 67. Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •68. Устранение автокорреляции в парной регрессии
- •69. F-тест качества спецификации множественной регрессионной модели.
- •70. Фиктивная переменная наклона: назначение; спецификация
- •71.Функция регрессии как оптимальный прогноз
- •72.Характеристики сервиса «Описательная статистика».
- •73. Метод наибольшего прадоподобия
- •Последовательность решения:
- •74. Что такое стационарный процесс
- •75. Эконометрика, её задача и метод.
- •76.Экспоненциальное сглаживание временного ряда
- •77. Этапы построения эконометрических моделей
- •78. Этапы решения экономико-математических задач.
43. Подбор переменных в модели множественной регрессии методом «снизу вверх»
Для подбора переменных в модели множественной «регрессии методом снизу вверх» мы для начала берем переменные х1,х2,х3…хn. Включаем переменную х1 в модель.
.
Делаем по этой
модели линейн. Находим соответственно
по линейн F.
Ищем F
.
Если F
больше
чем F
,
то следовательно качество модели
улучшилось. Добавляем еще одну переменную.
Проделываем тот же алгоритм при добавлении каждой переменной.
Если же Fменьше
чем F
,то
исключаем эту переменную, так как
качество модели не улучшилось с ее
добавлением.
44. Подбор переменных в модели множественной регрессии методом исключения переменных («сверху вниз»).
Для подбора переменных в модели множественной «регрессии методом сверху вниз» мы для начала берем все переменные х1,х2,х3…хn. Включаем все эти переменные в модель.
.
Делаем функцию
«линейн». По этой функции соответственно
находим число Фишера F.
Число Фишера мы ищем для оценки качества
модели.
Проводим тест
Стьюдента. Находим tкр.,
находим
,
,…
.
Сравинваем их сtкр.
Выделяем все t,
которые меньше tкр.
Из них уже находим наименьшее
.
Допустим это
.
Исключаем столбик, соответствующий
.(х2).
Уже по новой модели
(без столбика х2) вычисляем линейн..
Находим число Фишера F.
Если F
больше чем F
,
то качество модели улучшилось. Можем
сделать вывод о том, что мы правильно
исключили переменную. Если же наоборот,
то не стоит исключать эту переменную,
так как в следствие этого модель не
улучшилась.
По новой модели(
без столбика х2) проводим тест Стьюдента.
Находим tкр,
находим
,
,…
.
Сравинваем их сtкр.
Выделяем все t,
которые меньше tкр.
Из них уже находим наименьшее
.
и т.д.
Этот алгоритм
проделываем до тех пор, пока все
не будут больше чемtкр.
46. Последствия гетероскедастичности. Тест gq
Последствия:
не приводит к смещению оценок коэффициентов регрессии;
увеличивает дисперсию распределения оценок коэффициентов;
вызывает тенденцию к недооценке стандартных ошибок коэффициентов при использовании МНК.
Тест Г-К позволяет проконтролировать равенство дисперсий случайных возмущений.
Алгоритм теста:
сформировать служебную переменную pi=|x1i|+|x2i|+…+|xki|
упорядочить уравнения наблюдений в порядке возрастания переменной pi
разбить полученные уравнения примерно на 3 равные части
оценить модели по первой и последней частям уравнений наблюдений и вычислить для них ESS (дисперсии)
вычислить статистики GQ=ESS1/ESS2 и GQ^-1
найти значение Fкрит (через функцию FРАСПОБР)
сравнить полученные статистики с Fкрит. Если GQ<= Fкрити GQ^-1<=Fкрит, то остаток в модели гомо-чен.
47. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.
Включение в уравнения множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию должны отвечать следующим требованиям:
должны быть количественно измеримы;
не должны быть интеркоррелированы и, тем более, находиться в точной функциональной связи.
Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показатель детерминации R2, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р-факторов. Влияние других, неучтенных в модели факторов, оценивается как 1-R2 с соответствующей остаточной дисперсией S2 .
При дополнительном включении в регрессию фактора (1+р) коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться: R2p+1 >= R2p и S2р+1 =< S2р
Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемые в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметром регрессии по t –критерию Стьюдента. Т.о. отбор факторов обычно осуществляется в две стадии: на первой – подбирают факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.
Для оценки значимости коэффициента регрессии его величину сравнивают с его стандартной ошибкой, т.е. определяют фактическое значение t-критерия Стьюдента
где mb
– стандартная
ошибка параметра
,
где S остаточная дисперсия на одну степень свободы
Данный критерий затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2).
Если tтабл < tфакт, то H0 отклоняется, т.е. переменная оказывает влияние на модель. Если tтабл > tфакт, то гипотеза Но не отклоняется т.е. переменная не оказывает влияние на модель.