
- •Вопрос №1
- •Вопрос №3
- •Вопрос №2
- •Вопрос №4
- •Вопрос №5
- •Вопрос №6
- •Вопрос №8
- •Вопрос №7
- •Вопрос №10
- •Вопрос №9
- •Вопрос №11
- •Вопрос №12
- •Вопрос №13
- •Вопрос №14
- •Вопрос №15
- •Вопрос №16
- •Вопрос №17
- •Вопрос №18
- •Вопрос №19
- •Вопрос №20
- •Вопрос №21
- •Вопрос №22
- •Вопрос №23
- •Вопрос №24
- •Вопрос №25
- •Вопрос №26
- •Вопрос №27
- •Вопрос №28
- •Вопрос №29
- •Вопрос №30
- •Вопрос №31
Вопрос №6
Системы линейных уравнений. Уравнение называется линейным, если оно содержит неизвестные в первой степени и не содержит их произведений.
Запись в матричной форме.
- система линейных
уравнений.
Обозначим,
- матрица коэффициентов, - вектор
неизвестных,
-вектор свободных членов. Amn
Xn1
+ Bm1
= 0 - матричная запись системы уравнений.
Если система уравнений имеет решение, она называется совместной, не имеет – несовместной. Совместная система, имеющая одно решение, называется определенной, если много – неопределенной. Две системы уравнений называются равносильными или эквивалентными, если каждое решение является решением уравнения системы или наоборот.
Вопрос №8
Решение систем линейных уравнений с помощью определителей (формулы Крамера). Пусть Δ = |A| определитель матричной системы n линейных уравнений с n неизвестных, а Δj определитель матрицы, полученный из матричной системы заменой j-того столбца на столбец правых частей. Тогда если Δ ≠ 0, то система имеет единственное решение, определенное по формулам xj = Δj / Δ (j = 1,2,…n) – формула Крамера.
Вопрос №7
Обратная матрица. Матрицей, обратной матрице А, называется матрица A-1 такая, что A-1A = A A-1 = E.
Обратная матрица может существовать только для квадратной матрицы. Причем сама является той же размерности, что и исходная матрица.
Можно показать, что для того, чтобы квадратная матрица имела обратную, она должна быть невырожденной (т.е. Δ ≠ 0 ). Это условие является и достаточным для существования A-1 матрице А. Итак, всякая невырожденная матрица имеет обратную, и, притом, единственную.
Сформулируем правило нахождения обратной матрицы на примере матрицы А.
1. Находим определитель матрицы. Если Δ ≠ 0, то матрица A-1 существует.
2. Составим матрицу В алгебраических дополнений элементов исходной матрицы А. Т.е. в матрице В элементом i - ой строки и j - го столбца будет алгебраическое дополнение Aij элемента aij исходной матрицы.
3. Транспонируем матрицу В и получим BT.
Теорема существования и единственности обратной матрицы. Для квадратной матрицы А существует и при том единственная обратная матрица А-1 тогда и только тогда, когда эта матрица не вырождена.
Решение систем
линейных уравнений с помощью обратной
матрицы. Матричным
методом могут быть решены только те
системы, у которых число уравнений
совпадает с числом неизвестных и
определитель матрицы коэффициентов
отличен от нуля (матрица А невырожденная).
Из этих условий следует, что
и, следовательно, система совместна и
определена. Решение системы можно
получить так:
.
Используя свойства произведения матриц
и свойство обратной матрицы
.
Т.е., для получения столбца неизвестных
нужно обратную матрицу матрицы
коэффициентов системы умножить на
столбец свободных членов.
Пример.
Решить систему
матричным методом.Решение.
Найдем обратную матрицу для матрицы
коэффициентов системы
.
Вычислим определитель,
раскладывая по первой строке:
.
Поскольку Δ ≠ 0, то A-1
существует.
Обратная матрица
найдена верно.
Найдем решение системы
.
Следовательно, x1 = 1, x2 = 2, x3 = 3.
Матричный метод годится для решения любых систем, у которых матрица А квадратная и невырожденная.