- •Физика Конспект лекций (Часть 5. Волны, волновая оптика)
- •22. Волновые процессы
- •22.1 Основные понятия и определения
- •22.2 Уравнения плоской и сферической волн
- •22.3 Уравнение плоской волны, распространяющейся в произвольном направлении
- •22.4 Волновое уравнение
- •22.5 Скорость упругих волн в твердой среде
- •22.6 Энергия упругой волны
- •22.8 Вектор Умова. Интенсивность волны
- •22.1 Волновое уравнение для электромагнитных волн
- •22.2 Плоская электромагнитная волна
- •Продифференцируем первое уравнение в (22.20) по координате х и в правой части поменяем порядок дифференцирования и подставим значение из второго уравнения:
- •22.4 Энергия электромагнитной волны. Вектор Пойнтинга
- •22.5 Перенос энергии электромагнитным полем
- •22.6 Импульс электромагнитного поля
- •1. Общие сведения о свете
- •2. Законы отражения и преломления света
- •3. Приближение геометрической оптики
- •4. Принцип Гюйгенса
- •5. Законы отражения и преломления света
- •Интерференция света
- •Если же волны когерентные и , то
- •Интерференция цилиндрических волн
- •Интерференция цилиндрических волн
- •25. Когерентность
- •Временная когерентность
- •Уравнение реальных волн
- •Фаза реальной волны, как случайное блуждание
- •Длина временной когерентности
- •Влияние монохроматичности на когерентность
- •Пространственная когерентность
- •Пространственная когерентность
- •Интерференция в тонких пленках
- •И нтерференция света при отражении от тонких пластинок
- •Полосы равного наклона
- •Полосы равной толщины
- •Применение интерференции света
- •27. Дифракция света.
- •Дифракция света
- •Принцип Гюйгенса – Френеля
- •Метод зон Френеля
- •Метод графического сложения амплитуд
- •Метод графического сложения амплитуд
- •Дифракция от круглого отверстия
- •Д ифракция от круглого диска
- •Дифракция прямолинейного края полуплоскости
- •Дифракция Френеля от щели – самостоятельно.
- •Дифракция Фраунгофера от щели
- •28. Дифракционная решетка
- •Многолучевая интерференция
- •Дифракционная решетка
- •Дисперсия и разрешающая сила решетки
- •Разрешающая сила объектива
- •Дифракция рентгеновских лучей
- •29. Поляризация света
- •Естественный и поляризованный свет
- •Закон Малюса
- •Частично поляризованный и эллиптически поляризованный свет
- •Поляризация при отражении и преломлении.
- •Поляризация при двойном лучепреломлении
- •Природа двойного лучепреломления.
- •Интерференция поляризованных лучей
- •Прохождение света через кристаллическую пластинку
- •Искусственное двойное лучепреломление
- •Кристаллическая пластинка между двумя поляризаторами
- •Искусственное двойное лучепреломление
- •Вращение плоскости поляризации
22.2 Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое определяет смещение колеблющейся точки, как функцию координат равновесного положения точки и времени:
Если
источник совершает периодические
колебания, то функция
(22.2) должна
быть периодической функцией и координат
и времени. Периодичность по времени
следует из
того, что функция
описывает периодические колебания
точки с координатами
;
периодичность по координатам
из того, что точки находящиеся на
расстоянии
вдоль направления распространения
волны, колеблются одинаковым
образом
Ограничимся рассмотрением гармонических волн, когда точки среды совершают гармонические колебания. Необходимо отметить, что любую негармоническую функцию можно представить в виде результата наложения гармонических волн. Поэтому рассмотрение только гармонических волн не приводит к принципиальному ухудшению общности получаемых результатов.
Рассмотрим
плоскую волну. Выберем систему координат
так, чтобы ось Ох
совпадала с направлением распространения
волны. Тогда волновые поверхности будут
перпендикулярны к оси Ох
и, поскольку все точки волновой поверхности
колеблются одинаково, смещение точек
среды из положений равновесия
будет зависеть только от
х и t
:
(22.3)
Пусть
колебания точек, лежащих в плоскости
имеют вид:
(22.4)
Колебания
в плоскости, находящейся на расстоянии
х
от начала координат, отстают по времени
от колебаний в
на промежуток времени
,
необходимый волне для преодоления
расстояния х,
и описываются уравнением
, (22.5)
которое и является уравнением плоской волны, распространяющейся в направлении оси Ох.
При выводе уравнения (22.5) мы предполагали амплитуду колебаний одинаковой во всех точках. В случае плоской волны это выполняется, если энергия волны не поглощается средой.
Рассмотрим некоторое значение фазы, стоящей в уравнении (22.5):
(22.6)
Уравнение
(22.6) даёт связь между временем t
и местом
х,
в котором указанное значение фазы
осуществляется в данный момент. Определив
из уравнения (22.6)
,
мы найдём скорость, с которой
перемещается данное значение фазы.
Дифференцируя
(22.6), получаем:
,
откуда следует
(22.7)
Таким образом, скорость распространения волны в (22.1) есть скорость распространения фазы, вследствие чего её называет фазовой скоростью.
Уравнение (22.5) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, будет описываться аналогичным уравнением:
(22.8)
Уравнения (22.5) и (22.8) обычно представляют в несколько ином виде, чтобы переменные х и t входили в уравнение волны симметрично. Для этого введем величину
,
(22.9)
которую называют волновым числом.
С учётом (22.9) уравнение плоской волны (22.5) можно, записать в следующем виде:
(22.10)
Получим
уравнение сферической волны. Рассуждая
так же, как и в случае плоской волны,
легко видеть что точки, лежащие на
волновой поверхности радиуса R
колеблются с фазой
.
Можно показать, что амплитуда колебаний
в сферической волне даже при отсутствии
поглощения среды убывает по закону 1 /R
(это является следствием того, что
энергия источника волны распределяется
по мере удаления от него по волновым
поверхностям возрастающей площади).
Поэтому уравнение
сферической волны
можно записать
в виде:
(22.11)
