Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций. Часть 5. Волны, волновая оптика.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.94 Mб
Скачать

22.2 Уравнения плоской и сферической волн

Уравнением волны называется выражение, которое определяет сме­щение колеблющейся точки, как функцию координат равновесного поло­жения точки и времени:

Если источник совершает периодические колебания, то функция (22.2) должна быть периодической функцией и координат и времени. Периодичность по времени следует из того, что функция описывает пе­риодические колебания точки с координатами ; периодич­ность по координатам  из того, что точки находящиеся на расстоя­нии вдоль направления распространения волны, колеблются одинаковым образом

Ограничимся рассмотрением гармонических волн, когда точки среды совершают гармонические колебания. Необходимо отметить, что любую негармоническую функцию можно представить в виде результата наложения гармонических волн. Поэтому рассмотрение только гармонических волн не приводит к принципиальному ухудшению общности получаемых результатов.

Рассмотрим плоскую волну. Выберем систему координат так, чтобы ось Ох совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярны к оси Ох и, поскольку все точки волновой поверхности ко­леблются одинаково, смещение точек среды из положений равновесия будет зависеть только от х и t :

(22.3)

Пусть колебания точек, лежащих в плоскости имеют вид:

(22.4)

Колебания в плоскости, находящейся на расстоянии х от начала координат, отстают по времени от колебаний в на промежуток времени , необходимый волне для преодоления расстояния х, и описываются уравнением

, (22.5)

которое и является уравнением плоской волны, распространяющейся в направлении оси Ох.

При выводе уравнения (22.5) мы предполагали амплитуду колебаний одинаковой во всех точках. В случае плоской волны это выполняет­ся, если энергия волны не поглощается средой.

Рассмотрим некоторое значение фазы, стоящей в уравнении (22.5):

(22.6)

Уравнение (22.6) даёт связь между временем t и местом  х, в котором указанное значение фазы осуществляется в данный момент. Определив из уравнения (22.6) , мы най­дём скорость, с которой перемещается данное значение фазы. Диффе­ренцируя (22.6), получаем:

, откуда следует (22.7)

Таким образом, скорость распространения волны в (22.1) есть скорость распространения фазы, вследствие чего её называет фазовой скоростью.

Уравнение (22.5) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном нап­равлении, будет описываться аналогичным уравнением:

(22.8)

Уравнения (22.5) и (22.8) обычно представляют в несколько ином виде, чтобы переменные х и t входили в уравнение волны симметрично. Для этого введем величину

, (22.9)

которую называют волновым числом.

С учётом (22.9) уравнение плоской волны (22.5) можно, записать в следующем виде:

(22.10)

Получим уравнение сферической волны. Рассуждая так же, как и в случае плоской волны, легко видеть что точки, лежащие на волновой поверхности радиуса R колеблются с фазой . Можно показать, что амплитуда колебаний в сферической волне даже при отсутствии поглощения среды убывает по закону 1 /R (это является следствием того, что энергия источника волны распределяется по мере удаления от него по волновым поверхностям возрастающей площади). Поэтому уравнение сферической волны можно записать в виде:

(22.11)