- •Цель курса «Детали машин». Механизм и машина. Детали и сборочные единицы машин, их основные характеристики.
- •2. Современные направления в развитии машиностроения. Основные задачи научно-технического прогресса.
- •3. Требования к конструкции деталей и сборочных единиц. Понятие работоспособности, технологичности, экономичности. Критерии работоспособности.
- •4. Принципы расчёта деталей машин на прочность (силовой и размерный факторы, рабочие и допускаемые напряжения).
- •5. Действующие напряжения. Циклограммы нагрузок и напряжений.
- •6. Механические передачи. Назначение, классификация.
- •7. Кинематические и силовые соотношения для механических передач, передач вращательного движения.
- •8. Назначение соединений. Общие требования к соединениям. Неразъемные и разъемные соединения.
- •9. Резьбовые соединения. Основные типы резьбы, их сравнительная характеристика и область применения. Классификация резьб.
- •10. Стандартные резьбовые детали Способы изготовления Стопорение резьбовых соединений
- •11 Классы прочности и материалы резьбовых деталей
- •12 Силовые соотношения в винтовой паре Самоторможение в резьбе. Кпд винтовой пары
- •13 Момент завинчивания Момент сопротивления в резьбе и момент трения на опорной поверхности гайки
- •14 Расчёт на прочность элементов резьбы Распределения нагрузки по виткам резьбы гайки.
- •15. Сложное напряжённое состояние затянутого болта.
- •16 Расчёт резьбовых соединений при действии статической нагрузки, перпендикулярной осям болтов (болт поставлен с зазором)
- •17 Расчёт незатянутого болта при действии статической нагрузки, перпендикулярной оси болта (болты в отверстиях поставлены без зазора).
- •18. Расчёт затянутого болтового соединения при действии внешней асимметричной нагрузки, раскрывающей стык деталей (от f и m)
- •19. Расчёт группы затянутых болтов (клеммового соединения)
- •20 Расчёт группы затянутых болтов при действии асимметрично приложенной нагрузки, сдвигающей детали в стыке
- •1. Расчёт незатянутого болта при действии осевой силы. Стержень болта работает только на растяжение (рис. 4.3.21).
- •3. Расчёт болта при совместном действии растяжения и кручения сводится к расчёту по увеличенной растягивающей силе.
- •21 Общие сведения о сварных соединениях. Достоинства и недостатки. Область применения.
- •22 Расчёт на прочность сварных швов
- •23 Расчёт сварных соединений при действии изгибающего момента поперечной и продольной сил
- •24. Условие прочности сварного соединения
- •25 Заклёпочные соединения
- •28 Шпоночные соединения
- •29 Подбор шпонок и проверочный расчет шпонок
- •30 Шлицевые соединения
- •31 Поверочный расчет на прочность шлицевых соединений.
- •32 Соединения с натягом (прессовые). Общие сведения и расчет на прочность. Подбор посадки.
- •34 Общие сведения о зубчатых передачах. Принцип работы, устройство, достоинства и недостатки. Материалы. Область применения. Классификация.
- •35 Прямозубая цилиндрическая передача. Геометрические и кинематические соотношения
- •36 Скольжение и трение в зацеплении. Коэффициент торцевого перекрытия. Точность изготовления и её влияние на качество передач.
- •37 Виды разрушения зубьев и основные критерии работоспособности и расчета зубчатых передач.
- •38 Расчет зубьев цилиндрической прямозубой передачи на изгибную прочность
- •39 Расчет зубьев цилиндрической прямозубой передачи на контактную прочность.
- •40 Геометрия и кинематика косозубых цилиндрических передач
- •41 Силы в зацеплении
- •44 Силы в зацеплении
- •§ 9.1. Геометрические параметры и способы изготовления передач
- •51 Расчет зубьев червячного колеса на контактную и изгибную прочность.
- •53.Волновые передачи. Геометрические и кинематические соотношения.
- •54.Передача винт-гайка. Принцип работы, устройство, достоинства и недостатки. Область применения. Материалы, кпд.
- •55.Цилиндрическая передача Новикова. Геометрия зубчатого зацепления. Расчет передачи.
- •56.Планетарные передачи. Классификация. Геометрические и кинематические соотношения. Конструктивные особенности.
- •57.Силы в зацеплении планетарных передач. Расчет на прочность планетарных передач.
- •58.Общие сведения о ременных передачах. Достоинства и недостатки. Классификация. Область применения.
- •59.Детали ременных передач. Основные геометрические и кинематические соотношения в ременной передаче.
- •60.Силы и силовые зависимости в ременной передаче.
- •61. Напряжения в ремне
- •62. Расчет ременной передачи по тяговой способности, кпд передачи
- •63. Расчет долговечности ремня
- •64. Клиноременная передача
- •8.3 Недостатки цепных передач
- •67. Критерии работоспособности и расчета цепных передач. Материалы цепей
- •70.Критерии работоспособности валов и осей
- •71.Проектный расчет валов и осей.
- •73 Подшипники. Общие сведения. Подшипники скольжения. Конструкции, достоинства и недостатки, область применения. Материалы. Критерии работоспособности и расчета.
- •74.Подшипники качения. Устройство и сравнение с подшипниками скольжения. Область применения.
- •75. Классификация и маркировка подшипников качения
- •76. Подбор подшипников качения по динамической грузоподъемности.
- •77 Основные типы подшипников качения. Материалы, смазка. Конструирование опор валов.
- •78Муфты. Назначение и классификация.
- •79 Постоянные соединительные муфты
- •80 Расчёт упругих муфт.
- •81.Жёсткие муфты. Расчёт зубчатой муфты
20 Расчёт группы затянутых болтов при действии асимметрично приложенной нагрузки, сдвигающей детали в стыке
Расчёт болтовых соединений на прочность
1. Расчёт незатянутого болта при действии осевой силы. Стержень болта работает только на растяжение (рис. 4.3.21).
Проектировочный
расчёт выполняют по формуле
где dp – минимальный расчётный диаметр
болта, F0 – внешняя осевая сила.
Диаметр резьбы: d=dp+0,94p где р – шаг резьбы, d – наружный диаметр резьбы.
2.
Расчёт затянутого болта, нагруженного
внешней растягивающей силой.
Для обеспечения плотности стыка и
жестокости соединения болты (винты,
шпильки) затягивают. В затянутом
соединении полная нагрузка на болт
составляет
,где
F0 – силы предварительной затяжки,
X - коэффициент внешней нагрузки, учитывающий, какая часть внешней нагрузки при совместной деформации болта и деталей без прокладки, X=0,4...0,5 при соединении деталей с упругой прокладкой (резина, картон и др.).
Затянутый болт
растянут и скручен за счёт трения в
резьбе и под головкой болта. Эквивалентное
напряжение в стержне по гипотезе
формоизменения,
,Для
метрической резьбы
3. Расчёт болта при совместном действии растяжения и кручения сводится к расчёту по увеличенной растягивающей силе.
4.
Расчёт болтов для крепления крышек
цилиндров, находящихся после затяжки
под давлением.
Используя формулу для определения
полной нагрузки на болт, можно записать
окончательную расчётную формулу с
учётом кручения:
где
F0 – сила предварительной затяжки болта,
рассчитывается из условия нераскрытия
стыка, F – часть внешней силы в расчёте
на один болт,
- число болтов.
Расчётный
диаметр болта определяют по формуле:
где
-предел текучести материала, [s] –
коэффициент запаса прочности, зависящий
от условий работы, материала и диаметра
резьбы. В начале расчёта величина [s]
задаётся ориентировочно, после расчёта
уточняется.
5. Расчёт болта под действием поперечной силы, болт установлен без зазора. Болт установлен в отверстие из-под развёртки, работает на срез и смятие.
Условие прочности
на срез:
Проверочный расчёт на смятие:
6. Расчёт болта под действием поперечной силы, болт установлен в отверстие с зазором. Необходимая затяжка создаёт силу трения, препятствующую сдвигу деталей под действием внешней силы. Затянутый болт работает на растяжение и скручен за счёт трения в резьбе.
Потребная затяжка
где i – число плоскостей трения,К –
коэффициент запаса сцепления, К = 1,3…1,5.
тВлияние скручивания болта при затяжке
учитывают, увеличивая расчётную нагрузку
на 30%:
Расчётный
диаметр болта
7.
Формулы для проверочного расчёта болтов:
Болт растянут и скручен:
Болт
работает на сдвиг:
21 Общие сведения о сварных соединениях. Достоинства и недостатки. Область применения.
Не имеют соединяющих деталей. Выполняются за счёт местного нагрева и диффузии (перемешивания частиц) соединяемых деталей. Создают, практически, одну целую, монолитную деталь. Весьма прочны, т.к. используют одну из самых могучих сил природы - силы межмолекулярного сцепления. Сварные соединения (швы) по взаимному расположению соединяемых элементов делятся на следующие группы: стыковые, нахлёсточные, тавровые, угловые. Для сварки характерна высокая экономичность: малая трудоёмкость; сравнительная дешевизна оборудования; возможность автоматизации; отсутствие больших сил, как, например, в кузнечно-прессовом производстве; отсутствие больших объёмов нагретого металла, как, например, в литейном производстве. Недостатки сварки состоят в том, что при низком качестве шва возникают температурные повреждения материала, кроме того, из-за неравномерности нагрева возникает коробление деталей. Это устраняется либо привлечением квалифицированного (высокооплачиваемого) сварщика, либо применением автоматической сварки, а также специальными приспособлениями, в которых деталь фиксируется до полного остывания.
