- •Цель курса «Детали машин». Механизм и машина. Детали и сборочные единицы машин, их основные характеристики.
- •2. Современные направления в развитии машиностроения. Основные задачи научно-технического прогресса.
- •3. Требования к конструкции деталей и сборочных единиц. Понятие работоспособности, технологичности, экономичности. Критерии работоспособности.
- •4. Принципы расчёта деталей машин на прочность (силовой и размерный факторы, рабочие и допускаемые напряжения).
- •5. Действующие напряжения. Циклограммы нагрузок и напряжений.
- •6. Механические передачи. Назначение, классификация.
- •7. Кинематические и силовые соотношения для механических передач, передач вращательного движения.
- •8. Назначение соединений. Общие требования к соединениям. Неразъемные и разъемные соединения.
- •9. Резьбовые соединения. Основные типы резьбы, их сравнительная характеристика и область применения. Классификация резьб.
- •10. Стандартные резьбовые детали Способы изготовления Стопорение резьбовых соединений
- •11 Классы прочности и материалы резьбовых деталей
- •12 Силовые соотношения в винтовой паре Самоторможение в резьбе. Кпд винтовой пары
- •13 Момент завинчивания Момент сопротивления в резьбе и момент трения на опорной поверхности гайки
- •14 Расчёт на прочность элементов резьбы Распределения нагрузки по виткам резьбы гайки.
- •15. Сложное напряжённое состояние затянутого болта.
- •16 Расчёт резьбовых соединений при действии статической нагрузки, перпендикулярной осям болтов (болт поставлен с зазором)
- •17 Расчёт незатянутого болта при действии статической нагрузки, перпендикулярной оси болта (болты в отверстиях поставлены без зазора).
- •18. Расчёт затянутого болтового соединения при действии внешней асимметричной нагрузки, раскрывающей стык деталей (от f и m)
- •19. Расчёт группы затянутых болтов (клеммового соединения)
- •20 Расчёт группы затянутых болтов при действии асимметрично приложенной нагрузки, сдвигающей детали в стыке
- •1. Расчёт незатянутого болта при действии осевой силы. Стержень болта работает только на растяжение (рис. 4.3.21).
- •3. Расчёт болта при совместном действии растяжения и кручения сводится к расчёту по увеличенной растягивающей силе.
- •21 Общие сведения о сварных соединениях. Достоинства и недостатки. Область применения.
- •22 Расчёт на прочность сварных швов
- •23 Расчёт сварных соединений при действии изгибающего момента поперечной и продольной сил
- •24. Условие прочности сварного соединения
- •25 Заклёпочные соединения
- •28 Шпоночные соединения
- •29 Подбор шпонок и проверочный расчет шпонок
- •30 Шлицевые соединения
- •31 Поверочный расчет на прочность шлицевых соединений.
- •32 Соединения с натягом (прессовые). Общие сведения и расчет на прочность. Подбор посадки.
- •34 Общие сведения о зубчатых передачах. Принцип работы, устройство, достоинства и недостатки. Материалы. Область применения. Классификация.
- •35 Прямозубая цилиндрическая передача. Геометрические и кинематические соотношения
- •36 Скольжение и трение в зацеплении. Коэффициент торцевого перекрытия. Точность изготовления и её влияние на качество передач.
- •37 Виды разрушения зубьев и основные критерии работоспособности и расчета зубчатых передач.
- •38 Расчет зубьев цилиндрической прямозубой передачи на изгибную прочность
- •39 Расчет зубьев цилиндрической прямозубой передачи на контактную прочность.
- •40 Геометрия и кинематика косозубых цилиндрических передач
- •41 Силы в зацеплении
- •44 Силы в зацеплении
- •§ 9.1. Геометрические параметры и способы изготовления передач
- •51 Расчет зубьев червячного колеса на контактную и изгибную прочность.
- •53.Волновые передачи. Геометрические и кинематические соотношения.
- •54.Передача винт-гайка. Принцип работы, устройство, достоинства и недостатки. Область применения. Материалы, кпд.
- •55.Цилиндрическая передача Новикова. Геометрия зубчатого зацепления. Расчет передачи.
- •56.Планетарные передачи. Классификация. Геометрические и кинематические соотношения. Конструктивные особенности.
- •57.Силы в зацеплении планетарных передач. Расчет на прочность планетарных передач.
- •58.Общие сведения о ременных передачах. Достоинства и недостатки. Классификация. Область применения.
- •59.Детали ременных передач. Основные геометрические и кинематические соотношения в ременной передаче.
- •60.Силы и силовые зависимости в ременной передаче.
- •61. Напряжения в ремне
- •62. Расчет ременной передачи по тяговой способности, кпд передачи
- •63. Расчет долговечности ремня
- •64. Клиноременная передача
- •8.3 Недостатки цепных передач
- •67. Критерии работоспособности и расчета цепных передач. Материалы цепей
- •70.Критерии работоспособности валов и осей
- •71.Проектный расчет валов и осей.
- •73 Подшипники. Общие сведения. Подшипники скольжения. Конструкции, достоинства и недостатки, область применения. Материалы. Критерии работоспособности и расчета.
- •74.Подшипники качения. Устройство и сравнение с подшипниками скольжения. Область применения.
- •75. Классификация и маркировка подшипников качения
- •76. Подбор подшипников качения по динамической грузоподъемности.
- •77 Основные типы подшипников качения. Материалы, смазка. Конструирование опор валов.
- •78Муфты. Назначение и классификация.
- •79 Постоянные соединительные муфты
- •80 Расчёт упругих муфт.
- •81.Жёсткие муфты. Расчёт зубчатой муфты
59.Детали ременных передач. Основные геометрические и кинематические соотношения в ременной передаче.
Детали ременных передач:
Приводные ремни. Любой приводной ремень служит тяговым органом.
Механические соединители применяют для всех ремней, кроме быстроходных. Они позволяют осуществить быстрое соединение, но увеличивают его массу
Шкивы. Для плоских ремней наиболее приемлемой формой поверхности шкива является гладкая цилиндрическая поверхность
Сшивку применяют для ремней всех типов. Она производится посредством жильных струн или ушивальниками-ремешками из сыромятной кож
60.Силы и силовые зависимости в ременной передаче.
Появление
достаточных сил трения между ремнем и
шкивами, обеспечивающих передачу
требуемого момента достигается путем
предварительного натяжения ремня, при
этом в ремнях не работающего ремня
возникает сила
.
=1,5Мпа
; V-скорость
ремня; Z-число
ремней
При
холостом ходе
Из условия равновесия моментов внешних сил относительно оси вращения:
;
;
;
;
;
;
;
.
Эти уравнения устанавливают изменения натяжения ведущей и ведомой ветвей.
61. Напряжения в ремне
При работе ременной передачи напряжения по длине ремня распределяются неравномерно (рис. 17.6). Различают следующие виды напряжения в ремне:
Предварительное напряжение σο. В состоянии покоя или при холостом ходе каждая ветвь ремня натянута с силой Fo, следовательно,
где А — площадь поперечного сечения ремня.
Удельная окружная сила (полезное напряжение) kn. Отношение окружной силы в передаче (полезной нагрузки) Ft к площади поперечного сечения А называют удельной окружной силой kn или полезным напряжением:
Удельная окружная сила kn является разностью напряжений в ведущей σι и ведомой σ2 ветвях ремня при рабочем ходе на малой скорости (без учета влияния центробежных сил), т. е.
Значением kn оценивается тяговая способность ременной передачи.
Напряжение изгиба аи. Возникает в ремне при огибании шкивов. По закону Гука σΗ = ε£, где г=утак/г — относительное удлинение волокон на выпуклой стороне ремня при изгибе. Согласно рис. 17.7 утак = 0,56 и г = 0,5 (d + δ), следовательно,
Таким образом, натя- ж е н и е в ведущей и ведомой ветвях ремня при работе будет Fx+FVt F2 + Fv и для холостого хода F0 + Fv.
Направление силы Fn принимают по линии центров передачи. Обычно Fn в 2...3 раза больше окружной силы Ft, что является крупным недостатком ременных передач
62. Расчет ременной передачи по тяговой способности, кпд передачи
Тяговая способность повышается с увеличением угла охвата a1, коэффициента трения f ремня на шкиве, силы начального натяжения F0 и уменьшается с ростом скорости ремня vl из-за действия центробежных сил, отрывающих ремень от шкива. Однако с ростом силы F0 нагрузка на валы возрастает, а долговечность ремня уменьшается. Это ограничивает предельное значение силы F0
Расчет на тяговую способность основан на использовании кривых скольжения (рис. 14.8), которые строят в координатах коэффициент тяги — относительное скольжение. Коэффициент тяги
Он характеризует уровень нагруженности передачи вращающим моментом и не зависит от ее размеров. Отсюда можно определить напряжения в ремне от окружной силы
Рис. 14.8. Кривые скольжения и КПД
Относительное скольжение находят из формулы (14.9):
Кривые скольжения получают экспериментально: при постоянных F0 и V1 постепенно повышают полезную нагрузку — окружную силу на шкивах Ft и измеряют относительное скольжение. Испытания ременных передач проводят при типовых условиях: V1 = 10 м/с, a1 = 180°. До некоторого критического значения коэффициента тяги кривая скольжения имеет прямолинейный характер, так как скольжение вызывается упругими деформациями ремня, которые пропорциональны коэффициенту тяги.
При дальнейшем росте нагрузки кроме упругого скольжения возникает дополнительное проскальзывание и суммарное скольжение возрастает быстрее, чем нагрузка. Затем кривая скольжения резко поднимается вверх, и при предельном значении коэффициента тяги наступает полное буксование, т. е. шкив вращается при неподвижном ремне. При этом величина угла достигает значения угла охвата a1
При работе передачи возникают потери: на упругий гистерезис; на скольжение ремня по шкивам в окружном направлении; на преодоление аэродинамических сопротивлений; на трение в подшипниках. В клиноременной передаче из-за значительной высоты профиля добавляются потери на радиальное скольжение и на поперечное сжатие ремня в канавке. Наибольшая доля потерь приходится на гистерезис при изгибе, особенно для клино-ременных передач. Потери при изгибе и аэродинамические не зависят от нагрузки на передачу, поэтому КПД передачи при малых нагрузках низок. КПД достигает максимума при критическом коэффициенте тяги , (рис. 14.8), затем начинает уменьшаться в связи с потерями на буксование. Кривую изменения КПД получают экспериментально.
Кривые скольжения и КПД показывают, что оптимальная нагрузка ременной передачи лежит в зоне критического коэффициента тяги, где КПД наибольший. При меньших нагрузках возможности передачи используются не полностью. Переход за критическое значение коэффициента тяги допустим только при кратковременных перегрузках. Работа в этой области связана с повышенным износом ремня, потерями энергии в передаче и снижением скорости на ведомом шкиве. Средние значения , полученные из испытаний при типовых режимах, для клиновых ремней составляет примерно 0,7, для плоских синтетических — 0,5, для прорезиненных — 0,6. Оптимальные значения окружной силы и передаваемой мощности находят по формулам
