Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры детали машин.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.71 Mб
Скачать

39 Расчет зубьев цилиндрической прямозубой передачи на контактную прочность.

Контактная прочность зубьев является основным критерием работоспособности закрытых, обильно смазываемых и защищенных от абразива зубчатых передач. Расчет на контактную прочность включает расчеты на выносливость и на предотвращение разрушения рабочих поверхностей зубьев при максимальной нагрузке (§ 11.7).

Расчет на выносливость. Разрушение начинается вблизи полюса. Поэтому расчетные напряжения определяют на линии контакта, проходящей через полюс 77 (рис. 11.19, а).

Цель расчета — определение размеров передачи и материала колес, при которых не будет прогрессивного выкрашивания. Критерий прочности запишется так: σ// ^Мя, где с ff — расчетное напряжение, зависящее от геометрических параметров передачи, величины и характера нагрузки; [σ]^ — допускаемое напряжение, зависящее от состояния материала колес.

В качестве исходной принимают формулу Герца для максимальных контактных напряжений ои в центре площадки контакта двух цилиндров при их сжатии где F— нормальная к поверхности результирующая сила сжатия: £|, Е2 — модули упругости; V| , v2 — коэффициенты Пуассона материалов колес; 1Х — суммарная длина контактных линий; ρ — приведенный радиус кривизны

Для получения расчетной зависимости заменим величины, входящие в формулу Герца, параметрами зацепления

Суммарная длина контактных линий К\К\ в плоскости зацепления Ζ?|Ζ?2 (рис. 11.19, в) в прямозубой передаче колеблется. В зоне однопарного зацепления суммарная длина контактных линий равна bn. (в полюсе IT), в зоне двухпарпого зацепления — 2bw . Для расчетов принимают

где са — коэффициент торцового перекрытия, Zr — коэффициент, учитывающий суммарную длину контактных линий. Из предыдущей зависимости

При εα =1,2...1,8 значение Zr =0,966...0,856. В среднем можно принять ZE « 0,9 .

40 Геометрия и кинематика косозубых цилиндрических передач

Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном диаметре, называют косозубыми. При работе такой передачи зубья входят в зацепление не сразу по всей длине, как в прямозубой, а постепенно; передаваемая нагрузка распределяется на несколько зубьев. В результате по сравнению с прямозубой повышается нагрузочная способность, увеличивается плавность работы передачи и уменьшается шум.

Рис. 2.3.1 косозубая а) и шевронная б) передача

С увеличением угла наклона линии зуба плавность зацепления и нагрузочная способность передачи увеличиваются рис.2.3.15, но при этом увеличивается и осевая сила Fа, что нежелательно. Поэтому в косозубых передачах принимают угол .

Рисунок 2.3.15 Геометрия косозубых колес

Основные геометрические размеры зависят от модуля и числа зубьев. При расчёте косозубых колёс учитывают два шага:

нормальный шаг зубьев pn - в нормальном сечении,

окружной шаг pt – в торцовом сечении; при этом

Соответственно шагам имеем два модуля зубьев:

при этом (2.3.24) где mt и mn – окружной и нормальный модули зубьев.

За расчётный принимают модуль mn, значение которого должно соответствовать стандартному. Это объясняется следующим: для нарезания косых зубьев используется тот же инструмент, что и для прямозубых, но с соответствующим поворотом инструмента относительно заготовки на угол . Поэтому профиль косого зуба в нормальном сечении совпадает с профилем прямого зуба; следовательно, mn=m.

Диаметры делительный и начальный

(2.3.25)

Диаметры вершин и впадин зубьев

Межосевое расстояние