- •Осн. Направл. Развития машиностроения
- •4 Конструкция шарикоподшипников радиальных и радиально – упорных
- •5 Основные критерии работоспособности
- •6. Виды повреждения зубчатых передач
- •7. Виды нагрузок и их распределение
- •8. Материалы зубчатых колес и термообработка
- •9. Способы стопорения резьбовых соединений
- •11. Заклепочные соединения. Назначения, технология, классификация.
- •12. Соединение пайкой и склеиванием
- •13. Клеммовые соединения. Назначение, применение, виды соединений.
- •14. Шпоночные соединения
- •15.Шлицевые соединения. Назначение, виды. Способы центрирования
- •16.Сварные соединения. Основные виды соединений. Расчеты на прочность при нагружении осевыми силами.
- •17. Зависимость между осевой силой винта f и окружной силой в резьбе Ft
- •18.Зависимость между моментом, приложенным к гайке, и осевой силой винта.
- •19. В чем сущность расчета дм на прочность, жесткость, устойчивость, износостойкость, теплостойкость.
- •20.Клиноременная передача. Типы ремней, материал, назначение
- •21. Расчет на прочность стержня болта, внешняя нагрузка отсутствует
- •22. Расчет на прочность стержня болта, болт затянут, внкшняя нагрузка раскрывает стык деталей.
- •24. Корригированные зубчатые передачи. Положительные и отрицательные смещения.
- •25. Расчет соединений, включающих группу болтов
- •26. Расчет на прочность сварного нахлесточного соединения
- •27 И 28. Плоские ремни, материалы. Натяжение ременных передач (начальное, в ведущей и ведомой ветви).
- •29. Материалы для изготовления червяков и червячных колес.
- •30.Коэф. Осевого и торцевого перекрытия косозубых цилиндрических передач.
- •31.Клеевые и пайные соединения
- •32. Упругое скольжение и буксование в ременной передачи
- •33. Виды шлицевых соединений, расчет на прочность
- •34. Фрикционные передачи. Принцип работы. Классификация. Вариаторы.
- •36. Способы центрирования шлицевых соединений.
- •37. Критерии работоспособности и виды повреждений зубчатых передач
- •38. Геометрические параметры червяков, червячных колес и передач
- •40. Стандартные параметры зубчатыхцилиндрических передач, геометрия.
- •41.Зубчатые передачи, классификация, назначения, области применения
- •42.Тоность зубчатых передач.
- •43.Расчёт на прочность по контактным напряжениям червячных передач
- •44. Допускаемые напряжения зубчатых передач
- •45. Особенности расчёта конических зубчатых передач по контактным напряжениям
- •46. Особенности расчета конических зубчатых передач по напряжениям изгиба.
- •47. Напряжение в ремне ременных передач.
- •48. Определение силы давления на вал от ременной передачи.
- •49. Расчет заклепочных соединений.
- •50. Геометрия и кинематика зубчатых передач. Основные параметры цилиндрических зубчатых передач.
- •51Особенности расчет открытых и закрытых зубчатых передач
- •52. Виды разрушения зубчатых передач
- •53. Силы в зацеплении прямозубых и косозубых колес. Вывод формул.
- •54 Передача винт гайка. Расчет размеров гайки
- •55 Кинематика и динамика цепной передачи
- •56. Выбор подшипников качения по динамической грузоподъемности. Ресурс.
- •57. Конструкция многодисковой фрикционной муфты.
- •58. Расчет резьбы болта.
- •59. Расчет валов по эквивалентному моменту
- •60. Трение и смазка подшипников скольжения.
- •61. Конструкция предохранительных муфт
- •62.Геометрическиепораметры червячных передач.
- •63. Конструкция глухих муфт
- •64. Условный расчёт подшипников скольжения.
- •6 5. Шпоночные соединения, виды, расчет на прочность.
- •68. Расчет валов на кручение
- •69. Упорные подшипники.
- •70. Муфты предохранительные. Общие сведения. Назначения. Устройства
- •71. Болтовое соединение ( болт с зазором, без зазора). Методика расчета
- •72. Определение диаметра вала по эквивалентному моменту
- •73. Основные геометрические параметры червячной передачи (цилиндрический червяк)
- •74. Валы и оси. Общие сведения
- •75. Конструкция упругой втулочно-пальцевой муфты
- •76. Определение эквивалентной нагрузки подшипников качения
- •78. Подшипники качения. Общие сведения, классификация, точность
- •79. Эскиз глухой муфты (втулочной)
- •80. Определение коэффициента запаса прочности для опасного сечения вала
- •81. Упругое скольжение во фрикционной передаче. Геометрическое скольжение
- •15. Конструкция самоустанавливающихся подшипников качения
- •84. Расчет фрикционной цилиндрической передачи на контактную прочность
- •85. Проверочные расчеты на прочность для роликовой цепи
- •87. Конструкция цепной передачи (зубчатая цепь)
- •88. Муфты упругие. Общие сведенья, назначения, устройство. Выбор муфт.
- •90. Расчет фрикционных муфт
- •91. Расчет подшипников качения на долговечность
- •92. Цепные передачи, классификация приводных цепей. Критерии работоспособности
- •93.Конструкция валов, опорных участков
- •98. Расчет многодисковой фрикционной муфты
- •99. Геометрические параметры резьбы. Понятие приведенного коэффиента трения
- •101. Расчет ходового вала
13. Клеммовые соединения. Назначение, применение, виды соединений.
Клеммовое соединение— соединение валов и осей со ступицей, имеющей один или 2 продольных разреза, которая стягивается одним или несколькими винтами или болтами с гайками.
Соединения применяются для передачи крутящего момента или осевой силы на вал или на ось со стороны ступицы или наоборот.
Соединение обеспечивается силами трения, действующими между поверхностями вала и отверстия детали.
Достоинства
относительная простота конструкции, простота сборки или монтажа, возможность передачи большого крутящего момента или осевой силы. Самопредохранение от перегрузки. В отличие от шпоночного и зубчатого соединений, может служить также для крепления частей механизма под произвольным углом, а не только соосно, а также крепить деталь к валу в произвольном месте его длины.
Недостатки
затруднена точная установка ступицы относительно вала.
предельная осевая сила и крутящий момент ограничены силами трения сцепления.
По конструктивным признакам различают два основных типа клеммовых соединений: а) со ступицей, имеющей прорезь (рис. 5.1, а); б) с разъемной ступицей (рис. 5.1, б). Разъемная ступица несколько увеличивает массу и стоимость соединения, но при этом становится возможным устанавливать клемму в любой части вала независимо от формы соседних участков и других расположенных на валу деталей.
При соединении деталей с помощью клемм используют силы трения, которые возникают от затяжки болтов. Эти силы трения позволяют нагружать соединение как моментом (Г=Л), так и осевой силой Fa. Передача нагрузки только силами трения недостаточно надежна. Поэтому не рекомендуют применять клеммовые соединения для передачи больших нагрузок.
14. Шпоночные соединения
Шпоночные соединения, предназначенные в основном для передачи вращательного движения, применяются при отсутствии особых требований к точности центрирования соединяемых деталей.
По форме шпонки разделяются на призматические, клиновые, сегментные и тангенциальные. Призматические и сегментные шпонки создают ненапряженные соединения ступицы детали с валом, клиновые и тангенциальные - напряженные (при их монтаже) соединения, в которых рабочие поверхности шпонки и сопряженных с ней деталей находятся в напряженном состоянии еще до передачи нагрузки. В таких соединениях наблюдается перекос деталей при забивке шпонки в пазы вала и ступицы, и поэтому область их применения ограниченна.
Размеры сечения шпонок и пазов выбирают в зависимости от диаметра вала, длину шпонки - исходя из длины ступицы (несколько меньше ступицы).
Материал шпонок - обычно Стб, стали 45, 50 и другие с пределом прочности не ниже 590 МПа.
Призматические шпонки (рис. 7.5) изготавливают из чистотя-нутой стали прямоугольного сечения с отношением высоты к ширине от 1:1 (для валов малых диаметров) до 1:2. Узкие грани шпонки -рабочие. В тяжелонагруженных соединениях применяют шпонки призматические высокие, имеющие большую высоту и ширину.
Призматические шпонки иногда используют и как направляющие при осевом перемещении детали на валу. Шпонка, закрепленная на валу, называется направляющей, шпонка, скользящая вместе с деталью в пазу вала, - скользящей.
Для шпонок установлены следующие поля допусков: по ширине /г9; по высоте Шпри h = 2...6 мм и h11 при h>6 мм; по длине h14. Поля допусков пазов установлены для трех типов шпоночных
П
ринимается,
что нагрузка на рабочих гранях распределена
равномерно,
а ее равнодействующая приложена на
плече, равном d/2.
Соединения сегментными шпонками (рис. 7.6) применяют при валах небольших диаметров и сравнительно коротких ступицах колес. Шпонки выполняют в виде сегмента, что делает соединение наиболее технологичным как вследствие простоты изготовления самой шпонки, так и фрезерования шпоночного паза в валу (это касается и сборки). Однако вал сильно ослабляется глубоким пазом под шпонку. Исходя из этого, такие соединения целесообразно применять в условиях массового производства на малонагружен-ных участках валов, например на концах валов. Размеры шпонки выбираются из таблицы в зависимости от диаметра вала. В расчете на смятие принимаются те же допущения, что и для призматических шпонок
При выборе шпоночных соединений следует учитывать, что в технологическом отношении они являются самыми несовершенными из всех видов соединений.
