- •Осн. Направл. Развития машиностроения
- •4 Конструкция шарикоподшипников радиальных и радиально – упорных
- •5 Основные критерии работоспособности
- •6. Виды повреждения зубчатых передач
- •7. Виды нагрузок и их распределение
- •8. Материалы зубчатых колес и термообработка
- •9. Способы стопорения резьбовых соединений
- •11. Заклепочные соединения. Назначения, технология, классификация.
- •12. Соединение пайкой и склеиванием
- •13. Клеммовые соединения. Назначение, применение, виды соединений.
- •14. Шпоночные соединения
- •15.Шлицевые соединения. Назначение, виды. Способы центрирования
- •16.Сварные соединения. Основные виды соединений. Расчеты на прочность при нагружении осевыми силами.
- •17. Зависимость между осевой силой винта f и окружной силой в резьбе Ft
- •18.Зависимость между моментом, приложенным к гайке, и осевой силой винта.
- •19. В чем сущность расчета дм на прочность, жесткость, устойчивость, износостойкость, теплостойкость.
- •20.Клиноременная передача. Типы ремней, материал, назначение
- •21. Расчет на прочность стержня болта, внешняя нагрузка отсутствует
- •22. Расчет на прочность стержня болта, болт затянут, внкшняя нагрузка раскрывает стык деталей.
- •24. Корригированные зубчатые передачи. Положительные и отрицательные смещения.
- •25. Расчет соединений, включающих группу болтов
- •26. Расчет на прочность сварного нахлесточного соединения
- •27 И 28. Плоские ремни, материалы. Натяжение ременных передач (начальное, в ведущей и ведомой ветви).
- •29. Материалы для изготовления червяков и червячных колес.
- •30.Коэф. Осевого и торцевого перекрытия косозубых цилиндрических передач.
- •31.Клеевые и пайные соединения
- •32. Упругое скольжение и буксование в ременной передачи
- •33. Виды шлицевых соединений, расчет на прочность
- •34. Фрикционные передачи. Принцип работы. Классификация. Вариаторы.
- •36. Способы центрирования шлицевых соединений.
- •37. Критерии работоспособности и виды повреждений зубчатых передач
- •38. Геометрические параметры червяков, червячных колес и передач
- •40. Стандартные параметры зубчатыхцилиндрических передач, геометрия.
- •41.Зубчатые передачи, классификация, назначения, области применения
- •42.Тоность зубчатых передач.
- •43.Расчёт на прочность по контактным напряжениям червячных передач
- •44. Допускаемые напряжения зубчатых передач
- •45. Особенности расчёта конических зубчатых передач по контактным напряжениям
- •46. Особенности расчета конических зубчатых передач по напряжениям изгиба.
- •47. Напряжение в ремне ременных передач.
- •48. Определение силы давления на вал от ременной передачи.
- •49. Расчет заклепочных соединений.
- •50. Геометрия и кинематика зубчатых передач. Основные параметры цилиндрических зубчатых передач.
- •51Особенности расчет открытых и закрытых зубчатых передач
- •52. Виды разрушения зубчатых передач
- •53. Силы в зацеплении прямозубых и косозубых колес. Вывод формул.
- •54 Передача винт гайка. Расчет размеров гайки
- •55 Кинематика и динамика цепной передачи
- •56. Выбор подшипников качения по динамической грузоподъемности. Ресурс.
- •57. Конструкция многодисковой фрикционной муфты.
- •58. Расчет резьбы болта.
- •59. Расчет валов по эквивалентному моменту
- •60. Трение и смазка подшипников скольжения.
- •61. Конструкция предохранительных муфт
- •62.Геометрическиепораметры червячных передач.
- •63. Конструкция глухих муфт
- •64. Условный расчёт подшипников скольжения.
- •6 5. Шпоночные соединения, виды, расчет на прочность.
- •68. Расчет валов на кручение
- •69. Упорные подшипники.
- •70. Муфты предохранительные. Общие сведения. Назначения. Устройства
- •71. Болтовое соединение ( болт с зазором, без зазора). Методика расчета
- •72. Определение диаметра вала по эквивалентному моменту
- •73. Основные геометрические параметры червячной передачи (цилиндрический червяк)
- •74. Валы и оси. Общие сведения
- •75. Конструкция упругой втулочно-пальцевой муфты
- •76. Определение эквивалентной нагрузки подшипников качения
- •78. Подшипники качения. Общие сведения, классификация, точность
- •79. Эскиз глухой муфты (втулочной)
- •80. Определение коэффициента запаса прочности для опасного сечения вала
- •81. Упругое скольжение во фрикционной передаче. Геометрическое скольжение
- •15. Конструкция самоустанавливающихся подшипников качения
- •84. Расчет фрикционной цилиндрической передачи на контактную прочность
- •85. Проверочные расчеты на прочность для роликовой цепи
- •87. Конструкция цепной передачи (зубчатая цепь)
- •88. Муфты упругие. Общие сведенья, назначения, устройство. Выбор муфт.
- •90. Расчет фрикционных муфт
- •91. Расчет подшипников качения на долговечность
- •92. Цепные передачи, классификация приводных цепей. Критерии работоспособности
- •93.Конструкция валов, опорных участков
- •98. Расчет многодисковой фрикционной муфты
- •99. Геометрические параметры резьбы. Понятие приведенного коэффиента трения
- •101. Расчет ходового вала
Осн. Направл. Развития машиностроения
Основными тенденциями развития современного машиностроения являются:
Повышение мощности и быстроходности машин, равномерность хода
Автоматизация
Длительная безотказная работа (надежность и долговечность)
Удобство и безопасность обслуживания
Экономичность при эксплуатации
Минимальная масса и возможно наименьшая стоимость конструирования и изготовление машин
С увеличением мощности машины повышается ее производительность. Быстроходные машины не только более производительны, но и имеют меньше габариты, чем тихоходные той же мощности. Чем равномернее ход машины, тем выше качество ее работы.
P=TW P–мощность; Т–крутящий момент; W–угловая скорость.
Чем меньше Т, тем меньше габариты установки. Быстроходность стоит дорого, т.к. надо обеспечить высокую точность.
Автоматизация работы машины не только содействует повышению производительности и улучшению качества работы, но и снижает до миним-го участие человека в ее обслуживании.
Надежность и долговечность машины зависят от прочности ее деталей и узлов.
С
нижение
вредных сопротивлений в машине увеличение
ее КПД, также повышение срока службы
деталей и сборочные единиц. Машины тем
лучше, чем выше ее КПД. Машина должна
быть проста в обслуживании и не требовать
частого и сложного ремонта, удовлетворять
требованиям техники безопасности.
3- Проверочный расчет упругих муфт
Глухие муфты служат для жесткого соединения соосных валов.
На работу муфты существенно влияют толчки, удары и колебания, обусловленные характером работы приводимой в движение машины. Поэтому расчет муфты ведут не по номинальному моменту Т, а по расчетному Тр:
Tp=kpT,
где kp –коэффициент режима работы; Т — вращающий момент, Н-м: T=P/w,Р-—мощность, Вт;
w — угловая скорость,рад/с:
w=πn/30; п — частота вращения, мин-1.
Муфты, имеющие широкое распространение, стандартизованы. Основными характеристиками муфты являются момент, на передачу которого муфта рассчитана, и диаметры соединяемых валов.
Диаметр вала под муфту может быть определен расчетом на чистое кручение по пониженным допускаемым напряжениям.
Муфтыупругиевтулочно-пальцевые(МУВП) общего назначения применяются для передачи вращающих моментов со смягчением ударов с помощью упругих резиновых втулок, надеваемых на пальцы. Полумуфты насаживают на концы валов с натягом с использованием призматических шпонок. В одной полумуфте на конических хвостовиках закрепляют пальцы с надетыми на них резиновыми втулками. Эти резиновые втулки входят в цилиндрические расточки другой полумуфты. Вследствие деформирования резиновых втулок при передаче момента смягчаются толчки и удары, но амортизирующая способность муфты незначительна.
4 Конструкция шарикоподшипников радиальных и радиально – упорных
Ш
арикоподшипники
радиальные предназначены для восприятия
радиальных нагрузок, но могут воспринимать
небольшие осевые нагрузки. Применяются
в узлах с легкими условиями эксплуатации.
Допускают перекосы осей колец до 15’,
при небольших перекосах ресурс сниж-ся
и возможны разрушения из-за перегрева.
Могут фиксировать осевое положение
вала (точность невелика), невелика также
и жесткость в радиальном направлении подшипники
не следует применять в узлах, где
требуется точная фиксация положения
вала. Основные типы и конструктивные
разновидности:
С канавками на наружном кольце
С одной защитной шайбой
С двумя защитными шайбами
Параметры подш-в выбираются по справочникам. Эти пдш-ки имеют широкое применение из-за своей дешевизны, нетребовательности к точности монтажа и условиям смазки. Область применения: легкие редукторы, электродвигатели малой мощност и т.д.
Шарикопод-ки радиально-упорные отличаются расчетным углом контакта β и возможностью разборки при монтаже без усилий. Подшипники имеют на напорном кольце только 1 борт. Второй борт срезан, причем у некоторых типов поверхность желоба со стороны срезаемой части образует замок, препятствующий разборке. Срез одного из бортов облегчает сборку подш-ка в процессе изготовления и позв-т увеличить число шариков по сравнению с радиальнымиподш-ми. Предназначены для восприятия комбинированных (радиальных и осевых) или осевых нагрузок.
