
- •4) Способы стат. Наблюдения.
- •Характеристика сложной сводки
- •Характеристика централизованной сводки
- •Характеристика децентрализованной сводки
- •Макет статистической таблицы
- •2.Виды статистических таблиц
- •Основные правила построения статистических таблиц
- •Основные положения теории средних величин
- •17)Средняя арифметическая простая и взвешенная Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •Средняя арифметическая для интервального ряда
- •18)Расчет средней арифметической из групповых средних и из относительных величин
- •Средняя гармоническая взвешенная
- •Гармоническая простая
- •21. Средняя геометрическая.
- •22. Средняя квадратическая и средняя кубическая. Взаимосвязь средних степенных величин
- •23 И 24. Понятие моды и медианы. Расчет моды для дискретного и интервального рядов распределения
- •25. Понятие вариации, Среднее линейное отклонение
- •26.Понятие дисперсии и ее свойства
- •27. Среднее квадратическое отклонение и коэффицент вариации. Понятие и способ определения.
- •28. Межгрупповая, средняя из внутригрупповых и общая дисперсии. Правило сложения дисперсий
- •29.Коэффицент детерминации и эмпирическое корреляционное отношение. Дисперсия альтернативного признака
- •Среди множества признаков, изучаемых статистикой, выделяют такие, которыми обладают одни единицы совокупности и не обладают другие, называемые альтернативными.
- •Вариация альтернативного признака количественно проявляется в значении нуля у единиц, которые этим признаком не обладают, или единицы у тех, которые данный признак имеют.
- •30. Понятие динамических рядов и их виды. Сопоставимость рядов динамики
- •31. Темпы роста и прироста, абсолютный прирост
- •32.Средний уровень динамического ряда. Абсолютное значение 1% прироста
- •33. Приведение динамических рядов к одному основанию. Метод скользящей средней.
- •34. Интерполяция, экстраполяция и аналитический метод выравнивания рядов динамики
- •35. Статистические методы изучения сезонных колебаний
- •36. Понятие индексов. Значение индексов в экономических исследованиях
- •37. Индивидуальные и общие индексы. Правило выбора весов
- •38. Цепные и базисные индексы.
- •39. Средневзвешенный арифметический индекс
- •40. Средневзвешенный гармонический индекс
Средняя гармоническая взвешенная
Средняя
гармоническая — используется в тех
случаях, когда известны индивидуальные
значения признакаи
произведение
,
ачастоты
неизвестны.
Формула средней гармонической взвешенной:
Пример 2. Вычислить среднюю урожайность по трем фермерским хозяйствам
В
примере ниже
(урожайность одного гектара земли) -
известна,
— площадь неизвестна (хотя её можно
вычислить делением валового сбора
зерновых на урожайность),
— валовый сбор зерна известен.
Фермерское хозяйство |
Урожайность ц/га (х) |
Валовый сбор зерновых Ц (z = x*f) |
1 |
18,2 |
3640 |
2 |
20,4 |
3060 |
3 |
23,5 |
2350 |
Итого |
|
9050 |
Ответ: 20,1 ц/га
Гармоническая простая
В
тех случаях, когда произведение
одинаково
или равно 1 (z = 1) для расчета применяют
среднюю гармоническую простую, вычисляемую
по формуле:
Средняя гармоническая простая — показатель, обратный средней арифметической простой, исчисляемый из обратных значений признака.
Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:
Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.
21. Средняя геометрическая.
Применяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.
СГ исчисляется извлечением корня, степени n из произведений отдельных значений – вариантов признака х:
(9) гдеn – число вариантов; П – знак произведения, i = 1,2,…,n. Наиболее широкое применение СГ получила для определения ср.темпов изменения в рядах динамики, а также в рядах распределения.
Средняя хронологическая — это средний уровень ряда динамики, т. е. средняя, исчисленная по совокупности значений показателя в разные моменты или периоды времени. В зависимости от вида ряда динамики применяются различные способы ее расчета, а именно расчет средней хронологической интервального ряда и средней хронологической моментного ряда.
Средней хронологической интервального ряда является средняя величина из уровней интервального ряда динамики, которая исчисляется по формуле
где — средний уровень ряда;
у — уровень ряда динамики;
n — число членов ряда.
Средней хронологической моментного ряда является средняя величина из уровней моментного ряда динамики.
При равных промежутках времени между датами, на которые имеются данные, и равномерном изменении размера показателя между датами средняя хронологическая моментного ряда обычно исчисляется по формуле:
где у — уровень ряда; n — число всех членов ряда; — средний уровень.
Если периоды времени, отделяющие одну дату от другой, не равны между собой, то расчет средней хронологической моментного ряда производится по формуле средней взвешенной арифметической, в качестве весов которой принимаются отрезки времени между датами, т. е. по формуле:
гдеТ— время, в течение которого данный уровень ряда (у) оставался без изменения.
Известно, например, что в январе 2007 года произошло следующее изменение численности сотрудников компании "Бест": было на 1 января 551 чел., уволился 2 января один сотрудник, было принято 6 января 24 человека, 16 января— 6 человек, уволилось 25 января— 10 сотрудников. Требуется определить среднюю численность сотрудников компании "Бест" в январе 2007 г. Рассчитаем число календарных дней, в течение которых численность сотрудников компании "Бест" оставалась без изменения, и произведение этих чисел.
Таблица 5
Данные для расчета средней численности сотрудников компании "Бест"
Численность сотрудников компании «Бест», чел.(y) |
Число календарных дней, в течение которых данная численность сотрудников оставалась безизменения (T) |
Произведение численности сотрудников на число календарных дней(yT) |
551 |
1 |
551 |
550 |
4 |
2200 |
574 |
10 |
5740 |
580 |
9 |
5220 |
570 |
7 |
3990 |
ИТОГО |
31 |
17701 |
Используя данные произведенных расчетов, получим:
В отличие от первого способа расчета средней хронологической моментного ряда второй способ дает точное значение средней.