Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТАН.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
113.49 Кб
Скачать

14.Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами . p и q - произвольные действительные числа.

  1. Записываем характеристическое уравнение k2 + p ⋅ k + q = 0.

  2. Находим корни характеристического уравнения k1 и k2.

  3. В зависимости от значений корней характеристического уравнения записываем общее решение ЛОДУ с постоянными коэффициентами в виде:

    • , если ;

    • , если ;

    • , если

15 .Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейное неоднородное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами имеет вид , где p и q – произвольные действительные числа, а функция f(x) – непрерывна на интервале интегрирования X.

1)Если f(x) является многочленом n-ой степени f(x) = Pn(x), то частное решение ЛНДУ ищется в виде , где Qn(x) – многочлен степени n, а r – количество корней характеристического уравнения, равных нулю. Так как - частное решение уравнения , то коэффициенты, определяющие многочлен Qn(x), находятся методом неопределенных коэффициентов из равенства .

2) Если функция f(x) представлена произведением многочлена степени n и экспоненты , то частное решение ЛНДУ второго порядка ищется в виде , где Qn(x) – многочлен n-ой степени, r – число корней характеристического уравнения, равных . Коэффициенты многочлена Qn(x) определяются из равенства .

3) Если функция f(x) имеет вид , где А1 и В1 – числа, то частное решение ЛНДУ представляется как , где А и В – неопределенные коэффициенты, r – число комплексно сопряженных пар корней характеристического уравнения равных . Коэффициенты многочлена А и В находятся из равенства

4) Если , то , где r – число комплексно сопряженных пар корней характеристического уравнения, равных , Pn(x), Qk(x), Lm(x) и Nm(x) - многочлены степени n, k, m и m соответственно, m = max(n, k). Коэффициенты многочленов Lm(x) и Nm(x) находятся из равенства .

5) Для любого другого вида функции f(x) применяется следующий алгоритм действий:

  • находится общее решение соответствующего линейного однородного уравнения как y0 = C1 ⋅ y1 + C2 ⋅ y2, где y1 и y2 - линейно независимые частные решения ЛОДУ, а С1 и С2 – произвольные постоянные;

  • варьируются произвольные постоянные, то есть, в качестве общего решения исходного ЛНДУ принимается y = C1(x) ⋅ y1 + C2(x) ⋅ y2;

  • производные функций C1(x) и С2(x) определяются из системы уравнений , а сами функции C1(x) и C2(x) находятся при последующем интегрировании.

16.Основные понятия числовых рядов. Свойства сходящихся рядов.

Числовой ряд – это сумма членов числовой последовательности вида .

Частичная сумма числового ряда – это сумма вида , где n – некоторое натуральное число. называют также n-ой частичной суммой числового ряда

Числовой ряд называется сходящимся, если существует конечный предел последовательности частичных сумм . Если предел последовательности частичных сумм числового ряда не существует или бесконечен, то ряд называется расходящимся.

Суммой сходящегося числового ряда называется предел последовательности его частичных сумм, то есть, .

Свойства сходящихся рядов.

1.      Члены сходящегося ряда можно умножить на одно и то же число k. Полученный ряд будет сходиться, а сумма его будет в k раз больше суммы исходного ряда.

2.      Члены сходящегося ряда можно группировать. Полученный ряд будет сходиться, и сумма его не изменится.

3.      В сходящемся ряде можно отбросить конечное число первых членов . Полученный ряд будет сходиться, а его сумма будет меньше суммы исходного ряда на B.

4.      Для того чтобы ряд сходился необходимо и достаточно, чтобы сходился остаток ряда. (Докажите это самостоятельно, используя доказательство свойства 3).

5.      Сходящиеся ряды можно складывать (или вычитать), получая сходящийся ряд с суммой, равной сумме (или разности) сумм исходных рядов.