
- •Оглавление
- •1. Выбор на основе классического определения вероятности
- •1. Основы выбора на базе классического определения вероятности
- •1.2. Решение типового задания по теме «Выбор на основе классического определения вероятности» 解题方法
- •1.3. Задания по теме «Выбор на основе классического определения вероятности» 习题
- •Сумма и произведение событий
- •2.1. Основы алгебры событий 基本事件代数
- •2.2. Решение типового задания по теме «Сумма и произведение событий» 例题解答
- •2.3. Задания по теме «Сумма и произведение событий»习题
- •Формула полной вероятности и формула байеса
- •3.1. Основы экспертного оценивания 基本评估
- •Пример решения типового задания по теме «Формула полной вероятности и формула Байеса»例题解答
- •3.3. Задания по теме «Формула полной вероятности и формула Байеса» 习题
- •Ряд распределения дискретной случайной величины
- •4.1. Основы теории дискретных случайных величин
- •4.2. Пример решения типовых заданий по теме «Ряд распределения дискретной случайной величины» 例题详解
- •4.3. Задания по теме «Ряд распределения дискретной случайной величины»习题
- •Числовые характеристики дискретной случайной величины
- •5.1. Основы теории числовых характеристик дискретной случайной величины 随机变量数字特征基本理论
- •5.2. Пример решения типового задания по теме «Числовые характеристики дискретной случайной величины»
- •5.3. Задания по теме «Числовые характеристики дискретной случайной величины»习题
- •Варианты задания
- •Биномиальное распределение 二项分布、伯努利实验 (схема бернулли)
- •6.1. Основы теории биномиального распределения 二项分布基本理论
- •6.2. Пример решения типового задания по теме «Биномиальное распределение»例题详解
- •6.3. Задания по теме «Биномиальное распределение» 习题
- •7. Распределение пуассона (закон редких событий)泊松分布
- •7.1. Основы теории распределения Пуассона
- •7.2. Пример решения типового задания по теме «Распределение Пуассона»例题详解
- •7.3. Задания по теме «Распределение Пуассона» 习题
- •8. Равномерное распределение
- •8.1. Основы теории равномерного распределения均匀分布的基础理论
- •8.2. Пример решения типового задания по теме «Равномерное распределение» 例题详解
- •8.3. Задания по теме «Равномерное распределение» 习题
- •Варианты задания
- •9. Локальная и интегральная теоремы лапласа
- •9.1. Основы применения теорем Лапласа для приближенного вычисления вероятностей событий при независимых испытаниях独立实验中使用拉普拉斯定理计算事件概率
- •9.2. Пример решения типового задания по теме «Локальная и интегральная теоремы Лапласа» 例题详解
- •9.3. Задания по теме «Локальная и интегральные теоремы Лапласа»
- •10. Вариационный и статистический ряды
- •10.1. Основы выборочного метода 基本样本方法
- •10.2. Пример решения типового задания по теме «Вариационный и статистический ряды» 例题详解
- •10.3. Задания по теме «Вариационный и статистический ряды»习题
- •Варианты задания
- •11. Группированный статистический ряд
- •11.1. Основы группировки статистических данных
- •11.2. Пример решения типового задания по теме «Группированный статистический ряд»
- •11.3. Задания по теме «Группированный статистический ряд»
- •Варианты задания
- •12. Точечные оценки выборочных числовых характеристик 点估计
- •12.1. Основы точечного оценивания
- •12.2. Пример решения типового задания по теме «Точечные оценки выборочных числовых характеристик»
- •12.3. Задания по теме «Точечные оценки выборочных числовых характеристик»
- •Варианты задания
- •13. Точность и надежность оценки вероятности 估计概率的准确性与可靠性 (формула муавра-лапласа)
- •13.1. Основы интервального оценивания вероятности 区间估计
- •13.2. Пример решения типового задания по теме «Точность и надежность оценки вероятности»
- •13.3. Задания по теме «Точность и надежность оценки вероятности» 习题
- •14. Проверка гипотез методом доверительных интервалов
- •14.1. Основы проверки гипотез методом доверительных интервалов
- •14.2. Пример решения типового задания по теме «Проверка гипотез методом доверительных интервалов»例题详解
- •14.3. Задания по теме «Проверка гипотез методом доверительных интервалов»习题
- •15. Критерий пирсона
- •15.1. Основы проверки гипотезы о нормальном распределении
- •15.2. Пример решения типового задания по теме «Критерий Пирсона»
- •15.3. Задания по теме «Критерий Пирсона»
- •Варианты задания
- •16. Корреляционный анализ 相关分析
- •16.1. Основы корреляционного анализа
- •Степени корреляции
- •16.2. Пример решения типового задания по теме «Корреляционный анализ»
- •16.3. Задания по теме «Корреляционный анализ»
- •Варианты задания
- •17. Корреляционный анализ при дихотомическОм оценивании
- •17.1. Основы применения корреляционного анализа при дихотомическом оценивании
- •Степени тесноты связи при дихотомическом оценивании
- •17.2. Пример решения типового задания по теме «Корреляционный анализ при дихотомическом оценивании»
- •17.3. Задания по теме «Корреляционный анализ при дихотомическом оценивании»
- •Варианты задания
- •18. Регрессионный анализ 回归分析
- •18.1. Основы регрессионного анализа
- •18.2. Пример решения типового задания по теме «Регрессионный анализ»
- •18.3. Задания по теме «Регрессионный анализ»
- •Варианты задания
- •Приложения
- •Функция гаусса
- •Функция лапласа
- •Распределение χ2
3.3. Задания по теме «Формула полной вероятности и формула Байеса» 习题
3.1. В магазине марокканских мандаринов в 3 раза больше, чем турецких. Вероятность порчи марокканских мандаринов – 20%, а турецких – 35%.在商店中摩洛哥橘子是土耳其橘子的三倍,有20%的摩洛哥橘子坏掉,35%的土耳其橘子坏掉。 1. Найти вероятность, что случайно взятый мандарин – качественный.求拿到没坏掉的橘子的概率。 2. Какова вероятность, что этот мандарин – турецкий? 拿到土耳其橘子的概率。 |
3.2. В студенческой группе парней в 3 раза больше, чем девушек. Парни пропускают 50% занятий, а девушки – только 10%. 在班级中男生数量是女生的3倍,5男生出勤率50%,而女生只有10%。 1. Найти вероятность, что случайно выбранный при проверке студент отсутствует на занятии.求随机抽查时旷课学生的概率。 2. Какова вероятность, что это парень?抽查到男生的概率。 |
3.3. На диване 9 подушек, из них 3 жесткие. Вероятность спать со снами на мягкой подушке – 70%, на жесткой – 40%. Каждую ночь подушка выбирается случайно.在沙发上有9个枕头,其中有3个硬的。睡觉时睡软枕头做梦的概率时70%,硬枕头时40%。每个晚上选什么枕头时随机的。 1. Какова вероятность увидеть сон?求做梦的概率。 2. Какова вероятность, что при этом выбрали жесткую подушку?选到硬枕头的概率。 |
3.4. Вероятность увидеть ночью добрый или дурной сон равная. Вероятность запомнить добрый сон 75%, а дурной – 15%.晚上做噩梦和做美梦的概率是一样的。记住美梦的概率是75%,记住噩梦的概率是15%。 1. Какова вероятность запомнить сон?求记住梦的概率。 2. Найти вероятность, что при этом сон – добрый.求做美梦的概率。 |
3.5. В обменных группах в России 75% студентов из Финляндии, 20% из Германии и 5% из Китая. Финны заболевают в Санкт-Петербурге с вероятностью 5%, немцы – 50%, а китайцы – 60%. 在俄罗斯的交换学生中有75%来自芬兰,20%来自德国,5%来自中国。在圣彼得堡生活生病的概率是:芬兰学生5%,德国学生50%,中国学生60%。 1. Найти вероятность, что случайно выбранный студент, приехавший в Санкт-Петербург по обмену заболеет.求随机选取的生病学生的概率。 2. Какова вероятность, что это немец?选到德国学生的概率。 |
3.6. У бабушки 6 серых, 4 черных и 2 рыжих кота. Серые коты воруют мясо с вероятностью 20%, черные – 50%, а рыжие – 90%. Ночью один из котов случайно пробрался на кухню.奶奶有6只灰色的猫,4只黑色的,2只土黄色。灰色的有20%的概率偷肉,褐色的有50%的概率,土黄色有90%的概率。半夜有一只猫进了厨房。 1. С какой вероятностью мясо будет украдено?肉被偷的概率。 2. Какова вероятность, что это сделал черный кот?求肉被黑猫偷走的概率。 |
3.7. Фирма выполняет 5% крупных проектов, 40% средних и 55% мелких. Вероятность серьезных ошибок в мелком проекте 10%, в среднем – в 2 раза выше, а в крупном – в 4 раза выше.公司完成5%的大型项目,40%的中等项目,55%的小项目。小项目出现严重错误的概率是10%,中等项目高两倍,大型项目高四倍。 1. Найти вероятность, что в случайно проверенном проекте оказалась ошибка.求随机检查出错误的概率。 2. Какова вероятность, что это крупный проект?求随机抽到大型项目的概率。 |
3.8. В художественной галерее 20% картин XVIII века, 40% – XIX века, а остальные – XX века. Среди картин XVIII века 80% подделок, среди картин XIX века – 40%, а среди картин ХХ века – 5%. Купили 1 картину.在画廊有20%的油画是18世纪的,40%是19世纪的,其他事20世纪的。在18世纪油画中80%是赝品,19世纪中40%是赝品,20世纪中5%是赝品。随机买一幅油画。 1. Найти вероятность, что она подлинная.求买到真迹的概率。 2. Какова вероятность, что это оказалась картина XVIII века?求买到18世纪油画的概率。
|
3.9. В группе студентов программы «Международный семестр» 10 финнов, 5 немцев, 4 австрийца и 2 чеха. Финны пропускают занятия с вероятностью 70%, немцы – 15%, австрийцы – 20% и чехи – 40%.在国际交流学期项目班,有10名芬兰学生,5名德国学生,4名奥地利学生,2名捷克学生。芬兰学生旷课概率是70%,德国15%,奥地利20%,捷克40%。 1. С какой вероятностью случайно разыскиваемый студент пропустил занятия?随机抽到旷课学生的概率。 2. Какова вероятность, что это чех?求抽到旷课的是捷克学生的概率。 |
3.10. Преподаватель А спрашивает на экзамене в 3 раза больше студентов, чем В. При этом он ставит двойку с вероятностью 70%, а преподаватель В – с вероятностью 20%. 教师A在考试中提问的数量是教师B的3倍。教师A给不及格的概率是70%,教师B是20%。 1. С какой вероятностью случайно выбранный студент получит положительную оценку?随机抽到学生通过考试的概率。 2. Какова вероятность, что эту оценку поставил преподаватель А?随机抽到学生是由教师A通过考试的概率。 |