
- •Бабичев р.К., синявский г.П. Физика Практикум
- •Содержание
- •Введение
- •Лабораторные работы по механике. Лабораторная работа № 1. Изучение движения тела в поле силы тяжести. Краткая теория.
- •Порядок выполнения работы.
- •Изучение движения тела, брошенного вертикально.
- •Изучение движения тела, брошенного горизонтально.
- •Изучение движения тела, брошенного с земли под углом к горизонту.
- •Изучение движения тела, брошенного с некоторой высоты под углом к горизонту.
- •Контрольные вопросы.
- •Лабораторная работа № 2. Упругие и неупругие соударения.
- •Типы соударений.
- •Опыт 1.
- •Опыт 2.
- •2. Контрольное задание.
- •Контрольные вопросы.
- •Лабораторная работа № 3. Изучение пружинного маятника.
- •1 . Краткая теория.
- •2. Изучение силы упругости и потенциальной энергии пружины.
- •3. Изучение свободных колебаний пружинного маятника.
- •4. Изучение затухающих колебаний пружинного маятника.
- •Контрольные вопросы.
- •Лабораторная работа № 4. Исследование продольных и поперечных механических волн
- •1. Краткая теория.
- •2. Исследование поперечных волн.
- •Контрольное задание 1.
- •Задание повышенной сложности.
- •3. Исследование продольных волн в твердом теле и жидкости.
- •Контрольное задание 2.
- •Задание повышенной сложности.
- •4. Исследование продольных волн в газе.
- •Контрольное задание 3.
- •Задание повышенной сложности.
- •5. Определение Сp/Сv по скорости звука в газе.
- •Факультативное задание.
- •Контрольные вопросы.
- •Лабораторные работы по термодинамике и статистической физике Лабораторная работа № 5. Основные термодинамические процессы.
- •1. Изобарный процесс.
- •2. Изучение изобарного процесса.
- •Контрольное задание.
- •Контрольные вопросы.
- •3. Изохорный процесс.
- •4. Изучение изохорного процесса.
- •Контрольное задание.
- •Контрольные вопросы.
- •5 . Изотермический процесс.
- •При изотермическом расширение работа определяется выражениями
- •6. Изучение изотермического процесса.
- •Контрольное задание.
- •Контрольные вопросы.
- •7. Адиабатный процесс.
- •8. Изучение адиабатного процесса.
- •Контрольное задание.
- •Контрольные вопросы.
- •Лабораторная работа № 6. Работа газа.
- •1. Работа газа.
- •Контрольное задание.
- •Контрольные вопросы.
- •Лабораторная работа № 7. Термодинамические циклы.
- •Контрольное задание.
- •Контрольные вопросы.
- •Лабораторная работа № 8. Цикл Карно.
- •1. Краткая теория.
- •2. Исследование цикла Карно.
- •Контрольное задание 1.
- •Условия задания.
- •Данные для конкретного варианта:
- •Контрольные вопросы.
- •Лабораторная работа № 9. Изотермы реального газа.
- •Определения.
- •2. Диаграммы состояний насыщенных и ненасыщенных паров.
- •3. Критическая точка вещества
- •4. Изучение изотерм реального газа
- •Контрольное задание.
- •Контрольные вопросы.
- •Порядок выполнения работы.
- •Проведение измерений.
- •Порядок выполнения задания 1:
- •Порядок выполнения задания 2:
- •Порядок выполнения задания 3:
- •Порядок выполнения задания 4:
- •Лабораторная работа № 10 (часть 2). Напряженность, силовые линии и потенциал электрического поля.
- •Краткая теория
- •Ознакомительная часть.
- •Проведение измерений.
- •Порядок выполнения задания 1:
- •Порядок выполнения задания 2:
- •Контрольные вопросы
- •Лабораторная работа № 11 (часть 1). Закона Ома для цепи постоянного тока.
- •1. Замкнутая электрическая цепь.
- •Порядок выполнения работы.
- •Опыт 1.
- •Опыт 2.
- •2. Закон Ома для всей цепи.
- •Опыт 3.
- •Опыт 4.
- •3. Закон Ома для участка цепи.
- •Задание 1.
- •Лабораторная работа № 11 (часть 2). Контрольное задание.
- •4. Зависимость между эдс источника электрической энергии и напряжением на его зажимах.
- •5. Контрольное задание.
- •Контрольные вопросы.
- •Лабораторная работа № 12. Взаимодействие параллельных токов.
- •Краткая теория
- •2. Изучение магнитного поля и силы взаимодействия двух параллельных проводников с токами
- •Контрольное задание 1
- •Контрольное задание 2
- •Контрольные вопросы
- •Лабораторная работа №13 (часть1). Движение заряда в электрическом поле.
- •1. Краткая теория.
- •2. Движение заряда в электрическом поле
- •Контрольное задание 1
- •Задание повышенной сложности.
- •Порядок выполнения работы
- •Движение заряда по окружности Контрольное задание 2
- •Движение заряда по винтовой линии Контрольное задание 3
- •Контрольные вопросы
- •Лабораторная работа №14. Генератор переменного тока.
- •Краткая теория
- •2. Исследование генератора переменного тока
- •Контрольное задание 1
- •Контрольное задание 2
- •Контрольные вопросы
- •Лабораторная работа № 15 (часть 1). Свободные колебания в rlc-контуре.
- •Краткая теория
- •2. Изучение свободных колебаний в rlc-контуре
- •Контрольное задание 1
- •Лабораторная работа №15 (часть 2). Вынужденные колебания в rlc-контуре.
- •3. Краткая теория
- •2. Изучение вынужденных колебаний в rlc-контуре Контрольное задание 2
- •Контрольные вопросы
- •2. Исследование колец Ньютона
- •Контрольное задание 1
- •Лабораторная работа № 16 (часть 2). Интерференция. Опыт Юнга
- •3. Краткая теория
- •4. Исследование интерференционной картины в опыте Юнга
- •Контрольное задание 2
- •Лабораторная работа 16 (часть 3). Контрольное задание. Контрольное задание 3 (повышенной сложности)
- •5. Контрольные вопросы
- •Лабораторная работа №17 (часть 1). Дифракция.
- •1. Краткая теория
- •2. Исследование дифракции света
- •Контрольное задание 1
- •Лабораторная работа №17 (часть 2). Зоны Френеля
- •3. Краткая теория
- •4. Исследование зон Френеля
- •Контрольное задание 2
- •Лабораторная работа № 18 (часть 1). Фотоэффект.
- •1. Краткая теория
- •2. Исследование фотоэффекта
- •Контрольное задание 1
- •Лабораторная работа № 18 (часть 2). Комптоновское рассеяние.
- •3. Краткая теория
- •4. Исследование комптоновского рассеяния
- •Контрольное задание 2
- •Контрольные вопросы
Лабораторная работа № 16 (часть 2). Интерференция. Опыт Юнга
3. Краткая теория
Интерференцией световых волн называют сложение двух волн, в результате которого наблюдается усиление и ослабление результирующих световых колебаний в различных точках пространства.
В интерференционных схемах луч света приходит от источника света к точке наблюдения по двум различным путям. Результат интерференции зависит от разности оптических путей (разности хода ), пройденных этими лучами, и от длины световой волны . Если разность хода равна целому числу длин волн: = m, наблюдается интерференционный максимум (светлая полоса). Здесь m = 0, 1, 2,…
При разности хода, кратной нечетному числу полуволн:
= (2m+1)/ 2,
наблюдается интерференционный минимум (темная полоса).
Исторически первым интерференционным опытом, получившим объяснение на основании волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника проходит через две близко расположенные щели, таким образом, из одной световой волны формируются два источника когерентных волн.
Световые пучки, расширяясь вследствие дифракции, падают на белый экран. В области перекрытия световых пучков наблюдаются интерференционные полосы.
Ширина l наблюдаемых интерференционных полос на экране зависит от длины волны света и от угла между интерферирующими лучами. При симметричном расположении экрана по отношению к падающим лучам: l .
Если расстояние между двойной щелью и экраном, на котором наблюдается интерференционная картина, равно L, а расстояние между щелями равно d, то угол схождения лучей на экране равен = d / L (при d<<L) и, следовательно, ширина интерференционных полос
l = L /d .
Измеряя ширину полос l, Юнг впервые измерил длины волн световых лучей разного цвета.
4. Исследование интерференционной картины в опыте Юнга
Компьютерная модель, которая используется в работе, соответствует установке для наблюдения опыта Юнга (вид сбоку). Линейка выбора позволяет менять длину волны монохроматического света.
Контрольное задание 2
Теперь вам необходимо выполнить указанный преподавателем вариант задания из следующего списка. Полученные результаты необходимо занести в лабораторную тетрадь.
Вариант 1.
Расстояние между двумя когерентными источниками света ( = 380 нм) равно d = 2 мм, а расстояние от источников до экрана L = 4 м. Определить расстояние l между светлыми полосами на экране в средней части интерференционной картины.
Вариант 2.
Расстояние между двумя щелями в опыте Юнга d = 1,5 мм, расстояние от щелей до экрана L = 4 м, расстояние между максимумами яркости смежных интерференционных полос на экране l =1,01 мм. Определить длину волны источника монохроматического света.
Вариант 3.
Во сколько раз увеличится расстояние l между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр ( = 500 нм) заменить красным ( = 650 нм)?
Вариант 4.
В опыте Юнга отверстия освещались монохроматическим светом длиной волны = 400 нм, расстояние между отверстиями d = 3 мм и расстояние от отверстий до экрана L = 4 м. Найти положение трех первых светлых полос относительно нулевой.
Вариант 5.
Во сколько раз в опыте Юнга нужно изменить расстояние между щелями d, чтобы 2-я светлая полоса новой интерференционной картины оказалась на том же расстоянии от нулевой, что и 1-я светлая в прежней картине?
Вариант 6.
Расстояние между щелями в опыте Юнга d = 2,5 мм и = 600 нм. Каково расстояние между соседними светлыми полосами l на экране, если расстояние от щелей до экрана равно L = 4 м?
Вариант 7.
В опыте Юнга берется вначале монохроматический свет с длиной волны 1, затем - (2 > 1). При каком значении d 1-я светлая полоса сместится на 0,26 мм? Измерения провести для 1= 500 нм и 2=700 нм.
Вариант 8.
В опыте Юнга вначале берется свет с длиной волны 1 = 760 нм, а затем 2. Какова длина волны во втором случае, если 1-я светлая полоса в первом случае совпадает со 2-й светлой во втором?
Вариант 9.
Найти длину волны монохроматического излучения, если в опыте Юнга расстояние первого интерференционного максимума от центральной полосы l =1,06 см. Данные установки: L = 4 м, d = 1,7 мм.
Вариант 10.
Во сколько раз в опыте Юнга нужно изменить расстояние между щелями d, чтобы 2-я темная полоса новой интерференционной картины оказалась на том же расстоянии от нулевой, что и 1-я темная в прежней картине?
Вариант 11.
В опыте Юнга вначале берется свет с длиной волны 1 = 760 нм, а затем . Какова длина волны во втором случае, если 1-я темная полоса в первом случае совпадает с 1-й светлой во втором?
Вариант 12.
Во сколько раз увеличится расстояние l между соседними интерференционными полосами на экране в опыте Юнга, если фиолетовый светофильтр ( = 400 нм) заменить желтым ( = 600 нм)?
Теперь можно перейти к третьей части лабораторной работы.