
- •Конспект лекцій з дисципліни “Фізика”
- •Частина 1
- •Фізика Конспект лекцій
- •6.050801 “Мікро- та наноелектроніка”,
- •6.050802 “Електронні пристрої та системи”,
- •6.050701 “Електротехніка та електротехнології”,
- •6.050201 “Системна інженерія”
- •Частина 1
- •Передмова
- •Розділ 1 Фізичні основи класичної механіки Тема 1 Кінематика §1 Простір і час. Система відліку. Матеріальна точка. Радіус-вектор. Траєкторія, шлях, переміщення [7]
- •§2 Середня й миттєва швидкість. Визначення переміщення і шляху тіла за його швидкістю [4]
- •§3 Прискорення. Визначення швидкості тіла за його прискоренням. Швидкість та координати тіла під час рівноприскореного руху [1]
- •§4 Тангенціальне й нормальне прискорення. Радіус кривизни [1]
- •§5 Вектор кутового зміщення. Кутові швидкість і прискорення. Зв’язок між кутовими й лінійними величинами [1]
- •Тема 2 Динаміка матеріальної точки §6 Перший закон Ньютона. Інерціальні системи відліку [12]
- •§7 Інертність. Маса. Сила. Другий закон Ньютона [7]
- •§8 Третій закон Ньютона. Приклади, що ілюструють третій закон Ньютона [4]
- •§9 Одиниці вимірювань фізичних величин. Основні й похідні одиниці вимірювань. Розмірність [4,13]
- •§10 Закон всесвітнього тяжіння. Сила тяжіння і вага тіла. Вага тіла, що рухається з прискоренням [4]
- •§11 Сила тертя спокою, коефіцієнт тертя спокою. Сила тертя ковзання, коефіцієнт тертя ковзання [4]
- •§12 Сила пружності. Закон Гука. Розтягування і стискування стержнів, модуль Юнга [4]
- •Тема 3 Закони збереження §13 Закон збереження імпульсу для системи матеріальних точок [4]
- •§14 Центр мас системи матеріальних точок. Швидкість і прискорення центра мас [4]
- •§15 Робота змінної сили. Теорема про кінетичну енергію для системи матеріальних точок [7]
- •§16 Робота сили тяжіння, сили всесвітнього тяжіння, сили пружності. Консервативні сили [4,7]
- •§17 Потенціальна енергія. Взаємний зв’язок потенціальної енергії і консервативної сили [4,7]
- •§18 Повна механічна енергія системи матеріальних точок. Закон збереження повної механічної енергії для системи матеріальних точок. Робота неконсервативних сил [4]
- •§19 Зіткнення тіл. Швидкості тіл після центрального абсолютно пружного та абсолютно непружного ударів [4]
- •Тема 4 Тверде тіло в механіці §20 Момент сили і момент імпульсу. Рівняння моментів для матеріальної точки [7]
- •§21 Рівняння моментів для системи матеріальних точок. Закон збереження моменту імпульсу [1]
- •§22 Швидкість довільної точки твердого тіла під час його плоского руху. Кутова швидкість обертання твердого тіла. Миттєва вісь обертання [4]
- •§23 Рух центра мас твердого тіла. Прискорення центра мас твердого тіла [4]
- •§24 Обертання твердого тіла навколо нерухомої осі. Рівняння динаміки обертального руху відносно нерухомої осі [4]
- •§25 Момент інерції циліндра (диска) відносно осі симетрії [4]
- •§26 Момент інерції стержня [4]
- •§27 Теорема Гюйгенса-Штейнера [7]
- •§28 Робота тіла, що обертається навколо нерухомої осі [4]
- •§29 Кінетична енергія твердого тіла за умови плоского руху [4]
- •§30 Рівняння руху і рівноваги твердого тіла. Прискорення циліндра, який котиться без ковзання з похилої площини [1,7]
- •Тема 5 Неінерційні системи відліку §31 Неінерціальні системи відліку. Сили інерції. Поступальна сила інерції [7]
- •§32 Відцентрова сила інерції [4]
- •§33 Сила Коріоліса [4]
- •Тема 6 Механіка рідин §34 Методи Лагранжа та Ейлера для опису течії рідини. Трубка течії [4,14]
- •§35 Теорема про нерозривність потоку [4]
- •§36 Рівняння Бернуллі [4]
- •§37 Витікання рідини з малого отвору. Формула Торрічеллі [4]
- •§38 Сила внутрішнього тертя. Формула Ньютона для сили внутрішнього тертя. В’язкість. Ламінарна і турбулентна течія рідини. Число Рейнольдса [1]
- •§39 Рух тіл у рідинах та газах. Сила лобового опору. Піднімальна сила. Парадокс д’Аламбера. Вплив в’язкості на характер обтікання тіла рідиною. Сила Стокса [4]
- •Тема 7 Елементи спеціальної теорії відносності §40 Принцип відносності Галілея. Перетворення Галілея [4]
- •§41 Постулати спеціальної теорії відносності. Відносність одночасності [4,7]
- •§42 Перетворення Лоренца [4]
- •§43 Перетворення швидкостей у спеціальній теорії відносності [4]
- •§44 Лоренцеве скорочення довжини [4]
- •§45 Релятивістське уповільнення ходу часу [4]
- •§46 Інтервал і його інваріантність. Швидкість світла як гранична швидкість поширення довільного сигналу [4]
- •§47 Закон збереження імпульсу в спеціальній теорії відносності. Релятивістське рівняння динаміки [4]
- •§48 Кінетична енергія в спеціальній теорії відносності [4]
- •§49 Енергія спокою. Повна енергія. Взаємозв'язок маси й енергії спокою [4]
- •Розділ 2 Основи молекулярної фізики і термодинаміки Тема 8 Макроскопічний стан §50 Статистичний і термодинамічний підходи до вивчення теплових властивостей макроскопічних тіл [4]
- •§51 Термодинамічна система. Параметри стану системи. Рівноважні та нерівноважні стани. Термодинамічний процес. Квазистатичний процес [4]
- •§52 Температура. Термометр. Загальний (нульовий) закон термодинаміки. Основна властивість температури. Шкала температур Цельсія. Абсолютна температура [8]
- •§53 Основні положення молекулярно-кінетичної теорії речовини. Броунівський рух [4,15]
- •§54 Рівняння стану термодинамічної системи. Рівняння стану ідеального газу як результат узагальнення експериментальних досліджень [4]
- •§55 Барометрична формула [4]
- •§56 Тиск ідеального газу з точки зору молекулярно-кінетичної теорії [8]
- •§57 Молекулярно-кінетичний зміст абсолютної температури [4]
- •§58 Ступені вільності механічної системи. Теорема про рівномірний розподіл кінетичної енергії за ступенями вільності. Середня енергія молекули [4]
- •Тема 9 Перший закон термодинаміки §59 Внутрішня енергія термодинамічної системи [4]
- •§60 Робота, що виконується тілом при змінах його об'єму [4,8]
- •§61 Кількість теплоти. Перший закон термодинаміки. Вічний двигун першого роду [8]
- •§62 Теплоємність. Питома й молярна теплоємність. Теплоємність при постійному тиску, при постійному об'ємі. Внутрішня енергія ідеального газу. Рівняння Майєра. Стала адіабати [4]
- •§63 Рівняння адіабати ідеального газу [4]
- •§64 Політропічні процеси. Показник політропи. Рівняння політропи [4]
- •§65 Робота, що виконується газом при ізопроцесах [4]
- •§66 Класична теорія теплоємності ідеального газу [4]
- •Тема 10 Другий закон термодинаміки §67 Будова і принцип дії теплової машини. Коефіцієнт корисної дії теплової машини [8]
- •§68 Вічний двигун другого роду. Другий закон термодинаміки. Формулювання другого закону термодинаміки Томсона і Клаузіуса [8]
- •§69 Оборотні і необоротні процеси. Цикл Карно. Перша і друга теореми Карно [8]
- •§70 Нерівність і рівність Клаузіуса. Ентропія. Закон зростання ентропії [8]
- •§71 Ентропія ідеального газу [8]
- •Тема 11 Статистичні розподіли §72 Функція розподілу ймовірності. Функції розподілу молекул за швидкостями Максвелла [4,8]
- •§73 Середні швидкості молекул. Число ударів молекул об одиничну поверхню за одиницю часу [8]
- •§74 Розподіл Больцмана [4]
- •Тема 12 Явища перенесення §75 Довжина вільного пробігу молекул [8]
- •§76 Емпіричні рівняння, що описують дифузію, теплопровідність, внутрішнє тертя. Якісне пояснення явищ перенесення в газах [4]
- •Тема 13 Реальні гази та рідкий стан §77 Реальні гази. Рівняння Ван-дер-Ваальса [4,8]
- •§78 Ізотерми Ван-дер-Ваальсівського газу. Критичні температура, тиск, об'єм і їх зв'язок із сталими Ван-дер-Ваальса [4]
- •§79 Експериментальні ізотерми [4]
- •§80 Фаза в термодинаміці. Фазове перетворення першого і другого роду. Приклади фазових перетворень. Діаграма станів [4]
- •§81 Будова рідин. Поверхневий натяг рідин. Коефіцієнт поверхневого натягу. Крайовий кут [4]
- •§82 Формула Лапласа. Капілярні явища. Висота піднімання й опускання рідини в капілярах [4]
- •Розділ 3 Електрика Тема 14 Електричне поле у вакуумі §83 Явище електризації. Електричний заряд. Елементарний електричний заряд. Дискретність заряду. Закон збереження електричного заряду [5,16]
- •§84 Закон Кулона. Принцип суперпозиції електричних сил. Одиниці вимірювання заряду [5]
- •§85 Електричне поле. Напруженість електричного поля. Напруженість електричного поля точкового заряду. Принцип суперпозиції електричних полів [5]
- •§87 Зв’язок між напруженістю електростатичного поля і потенціалом. Силові лінії та еквіпотенціальні поверхні. Перпендикулярність силових ліній і еквіпотенціальних поверхонь [5]
- •§88 Поле електричного диполя [5]
- •§89 Потік вектора. Теорема Гаусса для вектора напруженості електричного поля [9]
- •§90 Напруженість електричного поля нескінченної однорідно зарядженої пластини [2]
- •§91 Напруженість електричного поля однорідно зарядженої циліндричної поверхні [2]
- •§92 Напруженість електричного поля об’ємно зарядженої кулі [2]
- •§93 Диференціальна форма електростатичної теореми Гаусса. Значення теореми Гаусса в теорії електрики [9]
- •Тема 15 Електричне поле у діелектриках §94 Поляризація діелектриків. Зв’язані заряди. Механізми поляризації [9]
- •§95 Вектор поляризації. Поверхнева густина зв’язаних зарядів. Зв’язаний заряд усередині діелектрика [9]
- •§96 Вектор електричної індукції. Теорема Гаусса для діелектриків [9]
- •§97 Поляризованість і діелектрична проникність [9]
- •§98 Умови на межі поділу двох діелектриків [17]
- •Тема 16 Провідники в електричному полі §100 Умови рівноваги зарядів на провіднику. Електричне поле усередині провідника. Напруженість електричного поля біля поверхні провідника [9]
- •§101 Електроємність відокремленого провідника. Ємність кулі [5]
- •§102 Конденсатор. Ємність конденсатора. Ємність плоского і циліндричного конденсатора. Ємність системи, що складається з послідовно та паралельно з’єднаних конденсаторів [5]
- •Тема 17 Енергія електричного поля §103 Енергія системи точкових зарядів [5]
- •§104 Енергія зарядженого провідника. Енергія зарядженого конденсатора [5]
- •§105 Енергія електричного поля [5]
- •Тема 18 Постійний електричний струм §106 Електричний струм. Густина електричного струму з мікроскопічної точки зору. Рівняння неперервності для електричного заряду [5,9]
- •§107 Сторонні сили. Електрорушійна сила. Робота над електричним зарядом на ділянці кола [5]
- •§108 Закон Ома для однорідної ділянки кола. Залежність опору від геометричних розмірів провідника. Закон Ома в диференціальній формі. Провідність [5]
- •§109 Закон Ома для неоднорідної ділянки кола в диференціальній і інтегральній формі. Закон Ома для замкненого кола [5]
- •§110 Правила Кірхгофа [5]
- •§111 Потужність струму. Закон Джоуля-Ленца в інтегральній і диференціальній формі [5]
- •§112 Процеси встановлення струму під час заряду і розряду конденсатора [9]
- •§113 Природа носіїв струму в металах. Дослід Рікке. Ідея Лоренца визначення відношення заряду до маси носія електричного струму в металах. Дослід Толмена і Стюарта [2]
- •§115 Електричний струм у газах. Процеси, що приводять до виникнення носіїв струму при самостійному газовому розряді. Самостійний та несамостійний розряди [5]
- •Список літератури
- •Предметний покажчик
- •Фізика Конспект лекцій
- •Частина 1
§46 Інтервал і його інваріантність. Швидкість світла як гранична швидкість поширення довільного сигналу [4]
1. Нехай у точці
в момент часу
відбулася подія 1, а у точці
в момент часу
– подія 2. Вираз
(46.1)
називають інтервалом між подіями 1 та 2. Основною особливістю інтервалу є те, що його величина є інваріантною, тобто він набуває одне і те ж значення у всіх інерціальних системах відліку.
2. Доведемо інваріантність інтервалу. Знайдемо інтервал в системі , що рухається зі швидкістю відносно нерухомої системи , і в системі й порівняємо їх значення. Для вирішення цієї задачі використаємо перетворення Лоренца
, (46.2)
. (46.3)
Підставимо (46.2), (46.3) в (46.1) і отримаємо
.
Таким
чином,
,
тобто інтервал має однакові значення
в системі відліку
та в системі відліку
.
Значить інтервал є інваріантною
величиною.
3. Розглянемо визначення інтервалу (46.1). Зазначимо, що інтервал може бути дійсною величиною, або уявною величиною. Внаслідок інваріантності інтервал буде дійсним або уявним, або рівним нулю у всіх інерціальних системах відліку.
Для дійсного інтервалу
. (46.4)
Звідси
випливає, що існує така система
,
в якій
.
Тобто події, які характеризуються
дійсним інтервалом, можуть відбуватися
в системі
в одній і тій же точці простору. При
цьому не існує системи, у якій
(при такому значенні
інтервал став би уявним). Таким чином,
події, які розділені дійсним інтервалом,
ні в якій системі відліку не можуть бути
одночасними. Відповідно до цього дійсні
інтервали називаються часоподібними.
Для уявного інтервалу
. (46.5)
Отже, існує така система , в якій , тобто події стають одночасними. Однак не існує системи, у якій (при такому значенні інтервал став би дійсним). Таким чином, події, які визначаються дійсним інтервалом, ні в якій системі відліку не можуть відбуватися в одній і тій же точці простору. Відповідно до цього уявні інтервали називають простороподібними.
4. Нехай подія 1 буде причиною, а подія 2 – наслідком. Тобто події 1 і 2 пов’язані між собою причинно-наслідковим зв’язком. Про ці події також говорять як про поширення сигналу. З’ясуємо, який інтервал відповідає цим причинно-наслідковим подіям.
Через те, що в довільній
системі відліку час наслідку
не повинен бути більшим за час причини
,
тобто
,
то це означає інтервал, який описує ці
події повинен бути або дійсним
(часоподібним), або дорівнювати нулю
.
Звідси випливає для причинно-наслідкових подій (процесу поширення сигналу) має місце
або
. (46.6)
Таким чином, події,
що пов’язані причинно-наслідковим
зв’язком, або процес поширення сигналу
описуються часоподідним інтервалом
або інтервалом, який дорівнює нулю. З
(46.6) також виплаває, що максимальна
швидкість сигналу будь-якої природи
не може перевищувати швидкість світла
.
Випадку, коли сигнал поширюється зі
швидкістю світла, відповідає інтервал,
який дорівнює нулю.
§47 Закон збереження імпульсу в спеціальній теорії відносності. Релятивістське рівняння динаміки [4]
|
Рисунок 47.1 |
Для цього розглянемо
абсолютно непружне
центральне зіткнення двох однакових
частинок маси
.
При зазначених на рис. 47.1 умовах сумарний
імпульс частинок
зберігається в системі
(до й після
зіткнення він
дорівнює нулю). У цій системі компоненти
швидкостей частинок дорівнюють
,
.
Зрозуміло, що після зіткнення швидкості
частинок у системі
будуть дорівнювати нулю.
Перейдемо в систему . Відповідно до формули додавання швидкостей, яка була отримана на базі перетворення Лоренца, можемо записати
,
.
Таким чином, до зіткнення проекція на вісь сумарного імпульсу частинок дорівнює
. (47.1)
Після
зіткнення частинки у системі
мають швидкість, що дорівнює нулю. Це
означає, що їх швидкість відносно системи
дорівнює
.
Тому проекція
сумарного імпульсу після зіткнення
дорівнює
.
Таким чином
.
Отриманий нами результат
означає, що в системі
закон збереження імпульсу, визначеного
як
,
не виконується.
Тільки за умови, що швидкості частинок
набагато менші
,
відмінністю виразу (47.1) від
можна знехтувати. Звідси випливає, що
визначення імпульсу у вигляді
є придатним тільки за умови, що
.
Для швидкостей порівнянних зі швидкістю
світла у вакуумі, імпульс повинен бути
визначений якось інакше, причому
при
це новий вираз для
імпульсу повинен переходити в ньютонівський
.
2. Виявляється, для того щоб закон збереження імпульсу був інваріантним по відношенню до перетворень Лоренца необхідно:
1.
Імпульс
замінити на релятивістський
імпульс
.
2. Припустити, що частинка має енергію спокою, яка пов’язана з його масою. При цьому також вважати можливим взаємне перетворення маси та енергії.
3. Для того, щоб другий закон Ньютона був інваріантним по відношенню до перетворення Лоренца його також потрібно змінити
. (47.2)
Рівняння (47.2) є релятивістським рівнянням динаміки для матеріальної точки. Аналізуючи (47.2), бачимо, що в релятивістському випадку маса втрачає зміст коефіцієнта пропорційності між прискоренням і силою. Більше того, напрямки сила та прискорення можуть не збігатися. Крім того, на відміну від ньютонівської механіки сила у релятивістській механіці не є інваріантною (у різних інерціальних системах відліку вона має різні модулі й напрямки).