- •Конспект лекцій з дисципліни “Фізика”
- •Частина 1
- •Фізика Конспект лекцій
- •6.050801 “Мікро- та наноелектроніка”,
- •6.050802 “Електронні пристрої та системи”,
- •6.050701 “Електротехніка та електротехнології”,
- •6.050201 “Системна інженерія”
- •Частина 1
- •Передмова
- •Розділ 1 Фізичні основи класичної механіки Тема 1 Кінематика §1 Простір і час. Система відліку. Матеріальна точка. Радіус-вектор. Траєкторія, шлях, переміщення [7]
- •§2 Середня й миттєва швидкість. Визначення переміщення і шляху тіла за його швидкістю [4]
- •§3 Прискорення. Визначення швидкості тіла за його прискоренням. Швидкість та координати тіла під час рівноприскореного руху [1]
- •§4 Тангенціальне й нормальне прискорення. Радіус кривизни [1]
- •§5 Вектор кутового зміщення. Кутові швидкість і прискорення. Зв’язок між кутовими й лінійними величинами [1]
- •Тема 2 Динаміка матеріальної точки §6 Перший закон Ньютона. Інерціальні системи відліку [12]
- •§7 Інертність. Маса. Сила. Другий закон Ньютона [7]
- •§8 Третій закон Ньютона. Приклади, що ілюструють третій закон Ньютона [4]
- •§9 Одиниці вимірювань фізичних величин. Основні й похідні одиниці вимірювань. Розмірність [4,13]
- •§10 Закон всесвітнього тяжіння. Сила тяжіння і вага тіла. Вага тіла, що рухається з прискоренням [4]
- •§11 Сила тертя спокою, коефіцієнт тертя спокою. Сила тертя ковзання, коефіцієнт тертя ковзання [4]
- •§12 Сила пружності. Закон Гука. Розтягування і стискування стержнів, модуль Юнга [4]
- •Тема 3 Закони збереження §13 Закон збереження імпульсу для системи матеріальних точок [4]
- •§14 Центр мас системи матеріальних точок. Швидкість і прискорення центра мас [4]
- •§15 Робота змінної сили. Теорема про кінетичну енергію для системи матеріальних точок [7]
- •§16 Робота сили тяжіння, сили всесвітнього тяжіння, сили пружності. Консервативні сили [4,7]
- •§17 Потенціальна енергія. Взаємний зв’язок потенціальної енергії і консервативної сили [4,7]
- •§18 Повна механічна енергія системи матеріальних точок. Закон збереження повної механічної енергії для системи матеріальних точок. Робота неконсервативних сил [4]
- •§19 Зіткнення тіл. Швидкості тіл після центрального абсолютно пружного та абсолютно непружного ударів [4]
- •Тема 4 Тверде тіло в механіці §20 Момент сили і момент імпульсу. Рівняння моментів для матеріальної точки [7]
- •§21 Рівняння моментів для системи матеріальних точок. Закон збереження моменту імпульсу [1]
- •§22 Швидкість довільної точки твердого тіла під час його плоского руху. Кутова швидкість обертання твердого тіла. Миттєва вісь обертання [4]
- •§23 Рух центра мас твердого тіла. Прискорення центра мас твердого тіла [4]
- •§24 Обертання твердого тіла навколо нерухомої осі. Рівняння динаміки обертального руху відносно нерухомої осі [4]
- •§25 Момент інерції циліндра (диска) відносно осі симетрії [4]
- •§26 Момент інерції стержня [4]
- •§27 Теорема Гюйгенса-Штейнера [7]
- •§28 Робота тіла, що обертається навколо нерухомої осі [4]
- •§29 Кінетична енергія твердого тіла за умови плоского руху [4]
- •§30 Рівняння руху і рівноваги твердого тіла. Прискорення циліндра, який котиться без ковзання з похилої площини [1,7]
- •Тема 5 Неінерційні системи відліку §31 Неінерціальні системи відліку. Сили інерції. Поступальна сила інерції [7]
- •§32 Відцентрова сила інерції [4]
- •§33 Сила Коріоліса [4]
- •Тема 6 Механіка рідин §34 Методи Лагранжа та Ейлера для опису течії рідини. Трубка течії [4,14]
- •§35 Теорема про нерозривність потоку [4]
- •§36 Рівняння Бернуллі [4]
- •§37 Витікання рідини з малого отвору. Формула Торрічеллі [4]
- •§38 Сила внутрішнього тертя. Формула Ньютона для сили внутрішнього тертя. В’язкість. Ламінарна і турбулентна течія рідини. Число Рейнольдса [1]
- •§39 Рух тіл у рідинах та газах. Сила лобового опору. Піднімальна сила. Парадокс д’Аламбера. Вплив в’язкості на характер обтікання тіла рідиною. Сила Стокса [4]
- •Тема 7 Елементи спеціальної теорії відносності §40 Принцип відносності Галілея. Перетворення Галілея [4]
- •§41 Постулати спеціальної теорії відносності. Відносність одночасності [4,7]
- •§42 Перетворення Лоренца [4]
- •§43 Перетворення швидкостей у спеціальній теорії відносності [4]
- •§44 Лоренцеве скорочення довжини [4]
- •§45 Релятивістське уповільнення ходу часу [4]
- •§46 Інтервал і його інваріантність. Швидкість світла як гранична швидкість поширення довільного сигналу [4]
- •§47 Закон збереження імпульсу в спеціальній теорії відносності. Релятивістське рівняння динаміки [4]
- •§48 Кінетична енергія в спеціальній теорії відносності [4]
- •§49 Енергія спокою. Повна енергія. Взаємозв'язок маси й енергії спокою [4]
- •Розділ 2 Основи молекулярної фізики і термодинаміки Тема 8 Макроскопічний стан §50 Статистичний і термодинамічний підходи до вивчення теплових властивостей макроскопічних тіл [4]
- •§51 Термодинамічна система. Параметри стану системи. Рівноважні та нерівноважні стани. Термодинамічний процес. Квазистатичний процес [4]
- •§52 Температура. Термометр. Загальний (нульовий) закон термодинаміки. Основна властивість температури. Шкала температур Цельсія. Абсолютна температура [8]
- •§53 Основні положення молекулярно-кінетичної теорії речовини. Броунівський рух [4,15]
- •§54 Рівняння стану термодинамічної системи. Рівняння стану ідеального газу як результат узагальнення експериментальних досліджень [4]
- •§55 Барометрична формула [4]
- •§56 Тиск ідеального газу з точки зору молекулярно-кінетичної теорії [8]
- •§57 Молекулярно-кінетичний зміст абсолютної температури [4]
- •§58 Ступені вільності механічної системи. Теорема про рівномірний розподіл кінетичної енергії за ступенями вільності. Середня енергія молекули [4]
- •Тема 9 Перший закон термодинаміки §59 Внутрішня енергія термодинамічної системи [4]
- •§60 Робота, що виконується тілом при змінах його об'єму [4,8]
- •§61 Кількість теплоти. Перший закон термодинаміки. Вічний двигун першого роду [8]
- •§62 Теплоємність. Питома й молярна теплоємність. Теплоємність при постійному тиску, при постійному об'ємі. Внутрішня енергія ідеального газу. Рівняння Майєра. Стала адіабати [4]
- •§63 Рівняння адіабати ідеального газу [4]
- •§64 Політропічні процеси. Показник політропи. Рівняння політропи [4]
- •§65 Робота, що виконується газом при ізопроцесах [4]
- •§66 Класична теорія теплоємності ідеального газу [4]
- •Тема 10 Другий закон термодинаміки §67 Будова і принцип дії теплової машини. Коефіцієнт корисної дії теплової машини [8]
- •§68 Вічний двигун другого роду. Другий закон термодинаміки. Формулювання другого закону термодинаміки Томсона і Клаузіуса [8]
- •§69 Оборотні і необоротні процеси. Цикл Карно. Перша і друга теореми Карно [8]
- •§70 Нерівність і рівність Клаузіуса. Ентропія. Закон зростання ентропії [8]
- •§71 Ентропія ідеального газу [8]
- •Тема 11 Статистичні розподіли §72 Функція розподілу ймовірності. Функції розподілу молекул за швидкостями Максвелла [4,8]
- •§73 Середні швидкості молекул. Число ударів молекул об одиничну поверхню за одиницю часу [8]
- •§74 Розподіл Больцмана [4]
- •Тема 12 Явища перенесення §75 Довжина вільного пробігу молекул [8]
- •§76 Емпіричні рівняння, що описують дифузію, теплопровідність, внутрішнє тертя. Якісне пояснення явищ перенесення в газах [4]
- •Тема 13 Реальні гази та рідкий стан §77 Реальні гази. Рівняння Ван-дер-Ваальса [4,8]
- •§78 Ізотерми Ван-дер-Ваальсівського газу. Критичні температура, тиск, об'єм і їх зв'язок із сталими Ван-дер-Ваальса [4]
- •§79 Експериментальні ізотерми [4]
- •§80 Фаза в термодинаміці. Фазове перетворення першого і другого роду. Приклади фазових перетворень. Діаграма станів [4]
- •§81 Будова рідин. Поверхневий натяг рідин. Коефіцієнт поверхневого натягу. Крайовий кут [4]
- •§82 Формула Лапласа. Капілярні явища. Висота піднімання й опускання рідини в капілярах [4]
- •Розділ 3 Електрика Тема 14 Електричне поле у вакуумі §83 Явище електризації. Електричний заряд. Елементарний електричний заряд. Дискретність заряду. Закон збереження електричного заряду [5,16]
- •§84 Закон Кулона. Принцип суперпозиції електричних сил. Одиниці вимірювання заряду [5]
- •§85 Електричне поле. Напруженість електричного поля. Напруженість електричного поля точкового заряду. Принцип суперпозиції електричних полів [5]
- •§87 Зв’язок між напруженістю електростатичного поля і потенціалом. Силові лінії та еквіпотенціальні поверхні. Перпендикулярність силових ліній і еквіпотенціальних поверхонь [5]
- •§88 Поле електричного диполя [5]
- •§89 Потік вектора. Теорема Гаусса для вектора напруженості електричного поля [9]
- •§90 Напруженість електричного поля нескінченної однорідно зарядженої пластини [2]
- •§91 Напруженість електричного поля однорідно зарядженої циліндричної поверхні [2]
- •§92 Напруженість електричного поля об’ємно зарядженої кулі [2]
- •§93 Диференціальна форма електростатичної теореми Гаусса. Значення теореми Гаусса в теорії електрики [9]
- •Тема 15 Електричне поле у діелектриках §94 Поляризація діелектриків. Зв’язані заряди. Механізми поляризації [9]
- •§95 Вектор поляризації. Поверхнева густина зв’язаних зарядів. Зв’язаний заряд усередині діелектрика [9]
- •§96 Вектор електричної індукції. Теорема Гаусса для діелектриків [9]
- •§97 Поляризованість і діелектрична проникність [9]
- •§98 Умови на межі поділу двох діелектриків [17]
- •Тема 16 Провідники в електричному полі §100 Умови рівноваги зарядів на провіднику. Електричне поле усередині провідника. Напруженість електричного поля біля поверхні провідника [9]
- •§101 Електроємність відокремленого провідника. Ємність кулі [5]
- •§102 Конденсатор. Ємність конденсатора. Ємність плоского і циліндричного конденсатора. Ємність системи, що складається з послідовно та паралельно з’єднаних конденсаторів [5]
- •Тема 17 Енергія електричного поля §103 Енергія системи точкових зарядів [5]
- •§104 Енергія зарядженого провідника. Енергія зарядженого конденсатора [5]
- •§105 Енергія електричного поля [5]
- •Тема 18 Постійний електричний струм §106 Електричний струм. Густина електричного струму з мікроскопічної точки зору. Рівняння неперервності для електричного заряду [5,9]
- •§107 Сторонні сили. Електрорушійна сила. Робота над електричним зарядом на ділянці кола [5]
- •§108 Закон Ома для однорідної ділянки кола. Залежність опору від геометричних розмірів провідника. Закон Ома в диференціальній формі. Провідність [5]
- •§109 Закон Ома для неоднорідної ділянки кола в диференціальній і інтегральній формі. Закон Ома для замкненого кола [5]
- •§110 Правила Кірхгофа [5]
- •§111 Потужність струму. Закон Джоуля-Ленца в інтегральній і диференціальній формі [5]
- •§112 Процеси встановлення струму під час заряду і розряду конденсатора [9]
- •§113 Природа носіїв струму в металах. Дослід Рікке. Ідея Лоренца визначення відношення заряду до маси носія електричного струму в металах. Дослід Толмена і Стюарта [2]
- •§115 Електричний струм у газах. Процеси, що приводять до виникнення носіїв струму при самостійному газовому розряді. Самостійний та несамостійний розряди [5]
- •Список літератури
- •Предметний покажчик
- •Фізика Конспект лекцій
- •Частина 1
§37 Витікання рідини з малого отвору. Формула Торрічеллі [4]
|
Рисунок 37.1 |
Виділимо подумки в рідині трубку течії, перетинами якого є відкрита поверхня рідини й перетин потоку на виході з отвору (див. рис. 37.1). Покажемо штриховими лініями усередині судини стінки трубки течії рідини. Для всіх точок кожного із цих перетинів швидкість рідини й висоту над деяким вихідним рівнем можна вважати однаковими. Тому до перетинів та можна застосувати рівняння Бернуллі
. (37.1)
Зазначимо,
що тиски
й
в обох перетинах однакові й дорівнюють
атмосферному. Швидкості
та
у цих перетинах пов’язані між собою
теоремою про нерозривність струменю
.
Звідси
через
те, що за умовою
.
Тому доданком
в (37.1) порівняно з
можна знехтувати. Тоді рівняння (37.1)
спрощується
.
Звідси знаходимо шукану швидкість витікання рідини з отвору
, (37.2)
де
– висота відкритої поверхні над отвором.
Формула (37.2) називається формулою
Торрічеллі. З неї випливає, що
швидкість витікання рідини з отвору,
який знаходиться на глибині
під відкритою поверхнею рідини, збігається
зі швидкістю, що отримує будь-яке тіло,
коли падає з висоти
(у випадку, якщо опором повітря можна
знехтувати). Цей результат отриманий у
припущенні, що рідина є ідеальною. Для
реальних рідин швидкість витікання
буде меншою.
§38 Сила внутрішнього тертя. Формула Ньютона для сили внутрішнього тертя. В’язкість. Ламінарна і турбулентна течія рідини. Число Рейнольдса [1]
1. Ідеальна рідина, тобто рідина без внутрішнього тертя, є абстракцією. Всі реальні рідини і гази у більшій або меншій мірі мають властивість в’язкості або внутрішнього тертя. В'язкість проявляється, зокрема, у тому, що рух, який виникає в рідині або в газі, після припинення дії причин, які його викликали, поступово припиняється. Прикладом може служити рух рідини в склянці після того, як її перестають розмішувати ложечкою.
Для з'ясування
закономірностей, яким підкоряються
сили внутрішнього тертя, розглянемо
такий дослід. У рідину занурені дві
паралельні одна одній пластини
(рис. 38.1), лінійні розміри яких значно
перевищують відстань між ними d. Нижня
пластина втримується на місці, верхня
приводиться в рух відносно нижньої з
деякою швидкістю
.
Дослід показує, що для переміщення
верхньої пластини з постійною швидкістю
необхідно діяти на неї із цілком
певною постійною за величиною силою
.
Раз пластина не отримує прискорення,
виходить, що дія цієї сили врівноважується
рівною їй за величиною та протилежно
направленою силою, яка і є силою тертя,
що діє на пластину при її русі в рідині.
Позначимо її
.
Варіюючи швидкість пластини
,
площу пластин
і відстань між ними
,
можна отримати:
, (38.1)
де
– коефіцієнт пропорційності, який
залежить від природи й стану (наприклад,
температури) рідини й називається
коефіцієнтом внутрішнього тертя або
коефіцієнтом в'язкості, або
просто в'язкістю рідини (газу).
На нижню пластину при
русі верхньої також виявляється діє
сила
,
яка однакова за величиною
.
Для того щоб нижня пластина залишалася
нерухомою, силу
необхідно врівноважити за допомогою
сили
.
|
Рисунок 38.1 |
Якщо досліджувати швидкість частинок рідини в різних шарах, то виявляється, що вона змінюється в напрямку , який перпендикулярний до пластин (рис. 38.1), за лінійним законом
. (38.2)
Частинки рідини, яка безпосередньо дотикаються до пластинки, як би прилипають до них, мають таку ж швидкість, як і самі пластини. Формулу (38.2) можемо перетворити
. (38.3)
Використавши рівність (38.3), формулі (38.1) для сили внутрішнього тертя можна надати вигляд
. (38.4)
Формулу (38.4) отримав
Ньютон і тому її називають формулою
Ньютона для сили внутрішнього тертя.
Величина
показує, як швидко змінюється швидкість
у напрямку осі
,
і називається градієнтом швидкості
(точніше, це – модуль градієнта швидкості;
сам градієнт є вектором).
Формула (38.4) була нами
отримана для випадку, коли швидкість
змінюється за лінійним законом (у цьому
випадку градієнт швидкості є постійним).
Виявляється, що ця формула залишається
справедливою й для будь-якого іншого
закону зміни швидкості при переході
від одного шару рідини до іншого. У цьому
разі для визначення сили тертя між двома
сусідніми шарами рідини потрібно брати
значення градієнта
у тому місці, де проходить уявна поверхня
розділу шарів.
Усе, що було сказане в цьому параграфі відноситься не тільки до рідин, але й до газів.
Одиницею в'язкості в СІ є така в'язкість, при якій градієнт швидкості, що дорівнює 1 м/с на 1 м, приводить до виникнення сили внутрішнього тертя в 1 Н на 1 м2 поверхні дотику шарів рідини. Ця одиниця позначається Н·с/м2.
Коефіцієнт в'язкості залежить від температури, причому характер цієї залежності істотно різний для рідин і газів. У рідин коефіцієнт в'язкості сильно зменшується з підвищенням температури. У газів, навпаки, коефіцієнт в'язкості з температурою росте. Відмінність у характері поведінки при змінах температури вказує на різні механізми внутрішнього тертя в рідинах і газах.
2. Спостерігається два види течії рідини (або газу). В одних випадках рідина як би розділяється на шари, які ковзають один відносно одного, не перемішуючись. Така течія називається ламінарною. Якщо в ламінарний потік увести підфарбований струмок, то він буде зберігатися, не розмиваючись, на всій довжині потоку, тому що частинки рідини в ламінарному потоці не переходять із одного шару в іншій. Ламінарна течія є стаціонарною.
При збільшенні швидкості або поперечних розмірів потоку характер течії істотно змінюється. Виникає енергійне перемішування рідини. Така течія називається турбулентною. При турбулентній течії швидкість частинок у кожному місці увесь час змінюється хаотичним чином – течія є нестаціонарною. Якщо в турбулентний потік увести пофарбований струмок, то вже на невеликій відстані від місця її введення пофарбована рідина рівномірно розподіляється по всьому перетині потоку.
Англійський учений Рейнольдс встановив, що характер течії залежить від значення безрозмірної величини:
, (38.5)
де
– густина рідини (або газу);
– середня за перерізом швидкість
потоку;
– в'язкість рідини;
– характерний для поперечного перерізу
потоку розмір, наприклад, сторона
квадрата при квадратному розтині, радіус
або діаметр при круглому розтині.
Величина
,
що визначається формулою (38.1), називається
числом Рейнольдса.
При малих значеннях
течія носить ламінарний характер.
Починаючи з деякого значення
,
яке називають критичним:,
течія стає турбулентною. Якщо за
характерний розмір труби взяти її радіус
(у цьому випадку
),
то критичне значення числа Рейнольдса
буде дорівнювати приблизно 1000 (якщо за
взяти діаметр труби, то критичне значення
буде дорівнювати 2000).
Число Рейнольдса служить критерієм подібності для течії рідин у трубах, каналах і т.д. Наприклад, характер течії різних рідин (або газів) у круглих трубах різних діаметрів буде однаковим, якщо кожній течії відповідає однакове значення .
У число Рейнольдса входить відношення густини й в'язкості . Величина
(38.6)
називається
кінематичною в'язкістю. Щоб
відрізнити в’язкість
від
,
величину
називають динамічною в'язкістю.
Число Рейнольдса, яке виражено через
кінематичну в'язкість, має вигляд
. (38.7)
