
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбциолнных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17. Разделение компонентов в изотермическом режиме и режиме программирования температуры.
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20. Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24. Ввод газообразных и твердых проб в гжх
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы.
- •29. Характеристики детекторов (чувствительность, порог чувствительности).
- •30. Линейность, селективность детекторов.
- •31. Общее устройство и принципиальная электрическая схема катарометра.
- •32. Типы термочувствительных ячеек и элементов детектора по теплопроводности.
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор.
- •35. Вольт-амперная характеристика ионизационных детекторов.
- •36. Пламенно-ионизационный детектор.
- •37. Детектор электронного захвата.
- •39. Фотоионизационный детектор.
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41. Классификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная хроматография. Требования к неподвижной фазе.
- •43. Классификация жидких фаз. Основные представители.
- •44. Классификация жидких фаз по величине относительной полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •52. Общие закономерности проведения тонкослойной хроматографии
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки.
- •55. Рефрактометрические детекторы
- •56. Фотометрические детекторы.
- •57. Флуореметрические детекторы.
- •58. Электрохимические, кондуктометрические и вольтамперометрические детекторы.
- •59. Качественный анализ в хроматографии. Основные цели и задачи, методы.
- •I.2. Использование табличных данных о характеристиках удерживания
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61. Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62. Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта.
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66. Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67. Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68. В чем заключается явление стекинга и какова его физическая природа?
- •69. Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70. Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
11. Оценка эффективности и селективности хроматографической колонки.
Для
того, чтобы разделение двух последовательных
пиков стало заметным, необходимо, чтобы
расстояние между максимумами пиков на
оси времени (t)
было больше, чем ширина пиков у основания,
выраженная через их стандартные
квадратичные отклонения. Из уравнения
следует, что главную роль в процессе
разделения веществ в колонке играют:
-
отношение значений абсолютных времен
удерживания
;
-
относительные стандартные отклонения
пиков
и
.
Таким образом, определяющими для процесса разделения веществ являются следующие два свойства хроматографической колонки:
первое характеризуется различием во времени, в течение которого колонка удерживает разделяемые компоненты, называется разделительным действием или селективностью и количественно оценивается величиной отношения для двух разделяемых соединений;
второе определяет меру размывания каждого пика относительно среднего значения времени, т.е. относительную ширину пика, называется эффективностью разделения и количественно оценивается величиной отношения
для каждого из разделяемых компонентов.
Под селективностью в самом общем смысле понимают способность хроматографической системы (сорбента и подвижной фазы) делить данную пару соединений. Роль хроматографической системы сводится, прежде всего к тому, чтобы обеспечить различие в скоростях перемещения компонентов. Чем больше это различие, тем сильнее раздвинуты максимумы пиков или пятна на пластине и тем лучше их разделение. Поэтому представляется логичным в качестве меры селективности использовать отношение скоростей перемещения компонентов.
Для разделения компонентов необходимо подобрать такие условия, чтобы разделяемые вещества перемещались по колонке с разными скоростями. Это достигается главным образом подбором соответствующей подвижной и неподвижной фазы. Так как зависит от коэффициентов емкости k' разделяемых компонентов, то повысив селективность разделения этих компонентов можно, увеличить объем неподвижной фазы, т. е. увеличив длину колонки и объем содержащегося в ней сорбента или неподвижной жидкой фазы.
Н
а
хроматограмме пики компонентов
анализируемой смеси могут иметь различный
вид. Они могут быть расположены совершенно
отдельно друг от друга или в большей
или меньшей степени накладываться друг
на друга (рис.1.8).
12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
Для оценки степени разделения компонентов можно использовать параметры хроматографической колонки. При этом общее уравнение для эффективности разделения имеет вид:
,
(39)
которое позволяет установить влияние числа теоретических тарелок (n) и коэффициента емкости колонки для второго компонента (k2) на величину степени разделения двух соединений.
С помощью этого уравнения можно рассчитать, какой эффективностью должна характеризоваться хроматографическая колонка для получения заданного значения степени разделения Rs при заданном значении емкости колонки по отношению ко второму компоненту k2 и заданном значении относительного удерживания разделяемых компонентов .
Если
в соотношении (39) число теоретических
тарелок выразить через отношение длины
колонки к высоте, эквивалентной
теоретической тарелки
,
то поскольку в зафиксированных условиях
процесса разделения большая часть
параметров этого уравнения остается
постоянными, величина степени разделения
оказывается пропорциональной корню
квадратному из длины хроматографической
колонки
.
Это соотношение показывает, что в первом приближении повысить эффективность процесса разделения можно простым увеличением длины колонки, при сохранении остальных параметров процесса разделения постоянными.
Первый сомножитель показывает, что достигаемое разделениепропорционально корню квадратному из числа теоретических тарелок nт.е. для увеличения разделения вдвое нужно увеличить эффективностьколонки в 4 раза. Например, увеличить длину колонки в 4 раза, при этомвремя анализа увеличивается также в 4 раза.
Если α = 1, то RS = 0, т.е. разделения нет независимо от числа теоретических колонок n. Однако из характера функции α в уравнении видно, что наибольшее изменение могут привести к заметному увеличениюразделения, особенно для тех случаев, когда значения α близки к 1. Еслиза счет подбора условий разделения удается изменить α с 1,1 до 1,2, этоприводит к улучшению разделения в два раза. Очевидно, что значимымчленом является селективность системы.
Если емкость колонки (третий сомножитель) принимает значениеk = 0, то RS = 0, т.е. разделение отсутствует − оба разделяемых компонента элюируются как несорбируемые вещества (взаимодействия с НЖФотсутствует). С ростом значения k степень разделения возрастает, приэтом скорость анализа уменьшается.
Как правило, если эффективность колонки недостаточна, а скорость анализа − важный фактор, то идут следующим путем. Для увеличения эффективности используют колонку с более мелким по зернистостисорбентом, хотя при этом увеличивается и давление в колонке.
Следует отметить, что эффективность колонки меньше влияет наразделение, чем селективность и коэффициент емкости, тем не менее повышению эффективности придается большое значение.
Влияние условий анализа на эффективность разделения
Любая хроматографическая колонка может заметно изменять свои разделительные свойства при изменении условий анализа. Наибольшее влияние оказывают скорость потока газа-носителяи температурапроцесса разделения.