Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРА ХРОМАТОГРАФИЯ.doc
Скачиваний:
5
Добавлен:
01.05.2025
Размер:
2.91 Mб
Скачать

9. Основные факторы размывания хроматографического пика.

Д ля того чтобы разделить бинарную смесь компонентов, необходимо, чтобы они находились в колонке разное время. Однако даже время пребывания отдельных молекул одного и того же вещества в большей или меньшей степени отличается от среднего значения, характерного для этого вещества. Причиной этому являются процессы диффузии, конвекции и замедленного обмена между подвижной и неподвижной фазами. Насадочные колонки независимо от их внутреннего диаметра представляют собой трубки, заполненные частицами сорбента, которые образуют стационарный зернистый слой. Поток газа фильтруется через этот слой, двигаясь по транспортным каналам, образуемым зазорами между частицами. За счет разных по длине путей перемещения молекул разделяемых соединений возникает специфический размывающий фактор, характеризуемый “вихревой” диффузией.

Рис. 12.

В капиллярных колонках имеется единственный транспортный канал вдоль ее оси. В этой связи в капиллярных колонках “вихревая” диффузия отсутствует, но возникает другой размывающий фактор, связанный с параболическим распределением скоростей по сечению канала, характеризуемый так называемой “тейлоровской” диффузией. Вследствие такого “рассеяния” времени пребывания в колонке отдельных молекул концентрация вещества на выходе из колонки изменяется во времени, при этом профиль концентрации подчиняется уравнению функции нормального распределения ошибок Гаусса, которое характеризует распределение концентрации исследуемого соединения C в пространстве в фиксированный момент времени “х” от времени положения максимума хроматографического пика

(20) ,где Смакс– величина концентрации вещества в точке максимума пика, численное значение которой рассчитывается из уравнения (20) при х = 0 и равная коэффициенту перед экспоненциальным членом уравнения Гаусса

. (21). Параметр в уравнениях (20) и (21) называется средним квадратичным отклонением, а величину называют дисперсией. Этот параметр характеризует степень размывания кривой распределения случайных ошибок, а в случае хроматографических разделений – ширину регистрируемого хроматографического пика у основания (рис. 13).

10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.

Теория теоретических тарелок разработана для описания процесса дистилляции, однако она является общей для всех многостадийных процессов и позволяет оценить эффективность колонки.

Теория теоретических тарелок является формальной и основана на представлении, что хроматографируемое вещество проходит через слой сорбента не непрерывным потоком, а порциями, распределяясь между подвижной и неподвижной фазами на отдельных элементарных участках слоя  так называемых «тарелках». Через каждую такую тарелку вещество проходит периодическими толчками. При этом предполагается, что за время каждого толчка, т. е. практически мгновенно, на тарелках успевает установиться равновесие распределения всех компонентов между подвижной и неподвижной фазами.

Таким образом, согласно этой теории, хроматографический процесс является многоступенчатым и состоит из большого числа актов сорбции=десорбции или растворения=испарения компонентов анализируемого вещества в хроматографической колонке, а сама колонка рассматривается как совокупность многих дискретных ступеней  тарелок, хотя в действительности слой адсорбента или пленка неподвижной жидкой фазы в колонке является непрерывным. Анализируемое вещество вместе с элюентом попадает на первую тарелку. Новая порция элюента, подаваемая на первую тарелку, приводит к новому распределению вещества между подвижной и неподвижной фазами, причем часть вещества с данной тарелки переносится на следующую. На этой тарелке также мгновенно устанавливается равновесие, а часть вещества уносится на следующие тарелки. Вследствие этого с каждой новой порцией элюента концентрация вещества на первой тарелке падает, а на последующих возрастает.

Если длину слоя сорбента в колонке (длину колонки) L, на которой осуществляется разделение смеси веществ и расположено некоторое число n теоретических тарелок, необходимое для разделения анализируемой смеси веществ, разделить на это число n, то получается величина Н, называемая высотой, эквивалентной одной теоретической тарелке (ВЭТТ):

(1.21)

Высота эквивалентной теоретической тарелки представляет собой толщину слоя сорбента, необходимую для установления равновесного распределения вещества между подвижной и неподвижной фазами. Таким образом, число теоретических тарелок n и высота эквивалентной теоретической тарелки Н являются величинами, характеризующими эффективность хроматографической колонки. Высота эквивалентной теоретической тарелки выражают в единицах длины, как правило в миллиметрах.

Так как  = 4 мм, экспериментально Н можно определить как дисперсию, приходящуюся на единицу длины колонки L,мм, непосредственно из хроматограммы, используя полученное на хроматограмме значение ширины пика  у его основания для нахождения величины :

(1.22)

Так как , то . Приняв время удерживания tR эквивалентом длины колонки, можно установить, что число теоретических тарелок n равно:

(1.23)

Если ширина пика измерена на середине его высоты, то 1/2 = 2,35  и

(1.24)