Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРА ХРОМАТОГРАФИЯ.doc
Скачиваний:
8
Добавлен:
01.05.2025
Размер:
2.91 Mб
Скачать

67. Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?

Капиллярный электрофорез, известный также как капиллярный зональный электрофорез , используется для разделения ионов по заряду. В случае обычного электрофореза заряженные молекулы перемещаются в проводящей жидкости под действием электрического поля.

Количество теоретических тарелок, или эффективность разделения в случае капиллярного электрофореза определяется уравнением:

N=мV/2 Dm

где N- это количество теоретических тарелок, м- это кажущаяся подвижность в среде разделения и Dm это коэффициент диффузии разделяемого вещества. В соответствии с этим уравнением эффективность разделения ограничивается только диффузией и является величиной, пропорциональной силе электрического поля. Эффективность разделения путем капиллярного электрофореза, как правило, значительно выше, чем эффективность других методов разделения, например, жидкостная хроматография высокого давления. В отличие от ЖХВД, в случае капиллярного электрофореза не происходит перенос масс между фазами. Профиль потока в случае систем электроосмотического потока является плоским, в отличие от ламинарного профиля хроматографических колонок, в которых разделение происходит под давлением . В результате этого при электроосмотическом разделении не происходит расширения полос, как при хроматографии. Разделение капиллярным электрофорезом может иметь несколько сотен теоретических тарелок.

68. В чем заключается явление стекинга и какова его физическая природа?

В основе капиллярного электрофореза(явления стекинга) лежат электрокинетические явления — электромиграция ионов и других заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно, высокого напряжения. Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время, такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и т. п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений.

Традиционно капиллярный электрофорез сравнивают с высокоэффективной жидкостной хроматографией (ВЭЖХ), поскольку в обоих методах разделение происходит в ограниченном пространстве (капилляре или колонке) с участием движущейся жидкой фазы (буферного раствора или подвижной фазы (элюента)) и для регистрации сигналов используют схожие принципы детектирования и программы обработки данных. Тем не менее у методов есть отличия, которые, безусловно, относятся к достоинствам капиллярного электрофореза:

-высокая эффективность разделения (сотни тысяч теоретических тарелок), недоступная ВЭЖХ и связанная с плоским профилем ЭОП,

-малый объем анализируемой пробы и буферов (не более 1–2 мл в день), при этом практически не требуется применение высокочистых, дорогостоящих органических растворителей,

-отсутствие колонки, сорбента, проблем с его старением и, значит, заменой колонки,

-простая и недорогая аппаратура,

-экспрессность и низкая себестоимость единичного анализа.

Из ограничений КЭ следует отметить невысокую, по сравнению с ВЭЖХ, концентрационную чувствительность и требование к анализируемым соединениям растворяться в воде и разбавленных водно-органических смесях.

Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (~2 нл) вводят в кварцевый капилляр, предварительно заполненный подходящим буфером — электролитом. После подачи высокого напряжения (до 30 кВ) к концам капилляра компоненты смеси начинают двигаться с разной скоростью, зависящей, в первую очередь, от заряда и массы (точнее, величины ионного радиуса) и, соответственно, в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной — высота или площадь пика, пропорциональная концентрации вещества.