
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •Содержание
- •1 Основы теории цифровых устройств…………………….…11
- •4 Цифровые интегральные микросхемы….…………….……63
- •22 Жидкокристаллические знакосинтезирующие
- •Сокращения и мнемонические обозначения
- •Предисловие
- •1 Основы теории цифровых устройств
- •1.1 Классификация
- •1.2 Система обозначений ис
- •1.3 Основные характеристики логических элементов
- •2 Арифметические оcновы цифровых устройств
- •2.1 Позиционная система счисления
- •Метод деления / умножения
- •Метод вычитания
- •2.3 Формы представления чисел в цифровых устройствах
- •Представление чисел с плавающей точкой
- •2.4 Двоичная арифметика
- •Сложение и вычитание двоично-десятичных чисел
- •2.5 Кодирование отрицательных чисел
- •2.6 Умножение и деление двоичных чисел
- •3 Логические основы цифровых устройств
- •3.2 Основные законы алгебры логики
- •3.3 Элементарные логические функции
- •3.4 Представление переключательных функций
- •3.5 Функционально полные системы переключательных
- •3.6 Минимизация переключательных функций
- •3.6.1 Минимизация логических функций методом Квайна
- •3.6.2 Минимизация логических функций с помощью карт Карно
- •4 Цифровые интегральные микросхемы
- •4.1 Базовый логический элемент ттл
- •4.2 Логические элементы или-не
- •4.3 Логические элементы с открытым коллектором и
- •4.4 Разветвление и объединение выходов и входов
- •4.5 Триггер Шмитта
- •4.6 Рекомендации по применению логических элементов ттл
- •5 Микросхемы ттл с транзисторами шоттки
- •5.1 Введение
- •5.2 Транзисторы с диодами Шоттки
- •5.3 Базовый логический элемент ис к533
- •5.4 Быстродействующие ттлш ис к530
- •5.5 Базовый логический элемент ис к1533
- •6 Цифровые микросхемы с кмоп-транзисторами
- •6.1 Общие сведения
- •6.2 Инвертор кмоп
- •А − упрощенная схема; б − полная схема с защитными и паразитными диодами
- •6.3 Буферный каскад
- •6.4 Основные характеристики инвертора
- •6.5 Тактируемый двунаправленный ключ
- •6.6 Логические элементы кмоп типа и-не, или-не
- •6.7 Разновидности простых лэ кмоп На основе базовых лэ спроектированы все микросхемы, входящие в состав серий кмоп: 561, к561, 564, 564в, к564, н564, кр1561, 1564.
- •6.8 Рекомендации по применению ис кмоп
- •7 Интегральные схемы эсл
- •7.1 Общие сведения
- •7.2 Базовый логический элемент ис к1500
- •7.3 Особенности применения эсл
- •8 Интегральные схемы на основе арсенида галия
- •8.1 Общие сведения
- •8.2 Базовый лэ сверхбыстродействующих ис к6500
- •8.3 Логические элементы, регистры, счетчики
- •9 Шифраторы
- •10 Дешифраторы
- •10.1 Линейные дешифраторы
- •10.2 Ступенчатые дешифраторы
- •Реализация функции
- •10.3 Дешифраторы-демультиплексоры ттл
- •11 Мультиплексоры
- •11.1 Назначение и принцип работы
- •11.2 Мультиплексоры ттл
- •11.3 Наращивание разрядности мультиплексоров
- •11.5 Синтез комбинационных схем на мультиплексорах
- •12 Арифметические устройства
- •12.1 Комбинационные двоичные сумматоры
- •13 Схемы сравнения цифровых кодов
- •13.1 Общие положения
- •13.2 Цифровые компараторы и их применение
- •Компаратора
- •14 Преобразователи кодов
- •14.2 Преобразователи кода для неполных матричных
- •15 Триггеры
- •15.1 Общие положения
- •15.2 Классификация триггеров
- •15.3 Триггерная ячейка r-s -типа
- •15.4 Асинхронные rs-триггеры на логических элементах и-не
- •15.5 Синхронные одноступенчатые триггеры
- •Микросхема к564 тм3
- •15.8 Счетные триггеры
- •Как самостоятельные изделия двухступенчатые синхронные триггеры не выпускаются, но они являются базой для построения счетных т-триггеров и универсальных jk - триггеров.
- •15.9 Универсальные jk-триггеры
- •А − jk − триггера; б − функциональное обозначение
- •16 Регистры
- •16.1 Параллельные регистры
- •16.2 Сдвигающие регистры
- •16.2.1 Последовательный регистр сдвига вправо
- •Регистра при сдвиге вправо
- •16.2.2 Реверсивный регистр
- •16.3 Кольцевые регистры-счетчики
- •16.3.1 Кольцевой регистр сдвига единицы
- •16.3.2 Кольцевой счетчик
- •17 Счетчики
- •17.1 Двоичные суммирующие счетчики с последовательным
- •17.3 Двоичные счетчики с параллельным переносом
- •17.4 Реверсивный двоичный счетчик
- •17.5 Десятичный счетчик
- •Счетчика
- •17.6 Типовые счетчики
- •17.6.2 Синхронные счетчики
- •17.6.3 Реверсивные счетчики
- •18 Программируемые делители
- •18.1 Программируемые делители с предварительной установкой
- •18.2 Программируемый делитель на к561ие15
- •19 Газоразрядные индикаторы
- •Напряжение зажигания, в…...............................170
- •20 Полупроводниковые индикаторы
- •20.1 Общие сведения
- •20.2 Управление единичными и шкальными индикаторами
- •А − ис155ид12; б − условное изображение
- •20.3 Одноразрядные знакосинтезирующие индикаторы
- •20.4 Полупроводниковые многоразрядные индикаторы
- •Индикаторов
- •20.4.1 Мультиплексная индикация
- •20.5 Матричные индикаторы
- •20.5.1 Управление матричными индикаторами Управление неполными матричными индикаторами
- •Управление матричными индикаторами
- •20.5.2 Блок формирования символов
- •21 Вакуумные люминцентные индикаторы
- •21.1 Введение
- •21.2 Одноразрядные вли
- •21.3 Многоразрядные индикаторы
- •Управление многоразрядными ивл
- •21.4 Шкальные индикаторы
- •21.5 Матричные индикаторы вли
- •22 Жидкокристаллические знакосинтезирующие индикаторы
- •22.1Общие сведения
- •22.2 Разновидности жки
- •Заключение
- •Библиографический список
- •Основы теории цифровых устройств и цифровые интегральные схемы
- •654007, Г. Новокузнецк, ул. Кирова, 42.
2.3 Формы представления чисел в цифровых устройствах
В цифровой технике применяют две формы представления чисел: с фиксированной и плавающей точкой. Эти формы называют соответственно естественной и полулогарифмической.
Представление чисел с фиксированной точкой.
В случае фиксированной точки (запятой) для всех чисел, над которыми выполняются операции в машине, положение точки строго фиксировано – порядок числа P в машине постоянен. Выбор величины P при использовании чисел с фиксированной точкой (запятой), в принципе, может быть произвольным. Положение точки закрепляется в определенном месте относительно разрядов числа и сохраняется неизменным для всех чисел, при этом точка никак не выделяется в коде числа, а только подразумевается. Множество чисел, которые могут быть изображены с помощью n разрядов, представляют собой на числовой оси ряд из 2n равностоящих точек с дискретностью, равной весу младшего разряда, которые заполняют некоторую область между Nmin и Nmax. Любое число между Nmin и Nmax может быть изображено с абсолютной погрешностью, не превышающей половины младшего разряда. Для хранения целых чисел в ячейках памяти предусматривается распределение разрядов (разрядная сетка), показанное в таблице 2.4.
Таблица 2.4
N – 1 |
N – 2 |
|
1 |
0 |
номера разрядов |
|
|
|
|
|
значения разрядов |
знаковый
разряды модуля числа
Для всех представляемых чисел их знаки плюс или минус, как правило, обозначают цифрами 0 и 1 соответственно и располагают перед старшим разрядом кода числа (таблица 2.5).
Каждый разряд двоичного числа называют битом. Восьмибитовая единица получила название байт.
Таблица 2.5
-
77
66
55
44
33
22
11
00
номера разрядов
11
00
11
11
00
00
11
11
значения разрядов
знаковый разряды модуля числа
Если точка фиксирована после младшего разряда, то могут быть представлены только целые числа. Диапазон представления целых без знаковых чисел:
Если количество значащих разрядов модуля числа превышает n–1, происходит потеря старших разрядов модуля. Это явление называется переполнением разрядной сетки и приводит к ошибке в представлении числа. Учет знака приводит к уменьшению диапазона представляемых чисел.
При представлении дробных чисел запятая фиксируется перед старшим разрядом. Диапазон представления дробных чисел:
Если представляемое число меньше Nmin, происходит обнуление разрядной сетки.
При представлении смешанных чисел запятая фиксируется (подразумевается) между целой и дробной частью:
целая часть
дробная часть
|
2 n – 1 |
2n – 2 |
|
20 |
2–1 |
|
|
2–n |
веса разрядов |
|
|
|
|
|
|
|
|
|
|
значения разрядов |
знаковый разряд
Работа вычислительных устройств с фиксированной точкой используется в основном для управления технологическими процессами и обработки информации в реальном масштабе времени. При выполнении операций с фиксированной точкой основным операндом в ЭВМ является 32-разрядное, в микро- и мини-ЭВМ – 16-разрядное, а в микропроцессорах – 8-разрядное слово (байт). В упакованном формате в одном байте размещаются две десятичные цифры.
Основное достоинство представления чисел с фиксированной запятой (точкой) заключается в том, что имеется возможность построить несложные арифметические устройства с высоким быстродействием.